THE SETL PROGRAMMING LANGUAGE

Robert B. K. Dewar

© 1979 All rights reserved

INTRODUCTION

SETL (for SET Language) is a highvét general purpose language which aloa lage
variety of programming problems to be solved in an efficient manner with a minimum
amount of effort.

This book describes the entire SETL language. The reader is assumed to be familiar with
some programming language and teéha lasic knowledge of the principles of algorithmic
programming, but no advanced kviedge of programming languages is assumed. A mathe-
matical background at the college algebrallés sufficient. Inparticular no grior knowl-

edge of set theory is required, although the constructions of SETL do frequently resemble
those notations commonly used by mathematicians using set theory.

Chapter | introduces the main features of the language in sufficient detail thaproan
grams can be written. Remaining chapters discagsus aspects of the language in detail.

Although the description in this book is complete, it is not a precise formal definitiar. Ho
eva, there is an appendix which contains a formal description of the permitted syntax.

CHAPTER 1

ELEMENTS OF THE SETL LANGU AGE

This chapter gies an nformal surey d most of the features of the SETL language. The
features described in this chapter are all included to the "SETL-S" subset of SETL. Thus it can be
assumed that the features described in this chaptevailebke in all SETL implementations.

1.1. Anlntroductory Example

The following is a small example of a complete SETL program. It is presentedtegie
perspectie the presentation which follgs. It is not necessary to understand all the details of
this program at this stage.

program primes;

$ This program prints out a list of prime numbers which includes all primes
$ less than a parameter value which is specified as input data.

read(n); $read input parameter
primes ={}; $ set of primes output so far
p=2; $initial value to test

$ Loop to test successi values

loop whilep <ndo $ loop as long as p less than n
if notexistst in primes | pnodt =0 then
print (p); $no divisors, its a pime
primeswith:=p; $add it to set of primes
end if;
p=p+1 $ move O next test value
end loop;

end program primes;
This is not a particularly efficient program, and it is nanethe easiest way of approaching the

problem in SETL, bt it deliberately only uses a small set of simple features. The $ acts as a com-
ment delimiterthe compiler ignores all text on a line which follows a dollar sign.

Chapter 1 The SETL Programming Language Page 2

Chapter 1 The SETL Programming Language Page 3

Now that we hae ®en one small program, we can study the features of the language in
more detail.

1.2. AssignmeniStatements & Expressions

As in most programming languages, a fundamental notion in SETL is that of assignment.
The form of an assignment statement in SETL is:

identifier = expression;

Statements are free form and may be entered anywhere on a line, oveplih® boundaries

(except that a single token, such as an identif@rnot be spliteer a line boundary). As indicated

in the abwe example, gery statement is terminated by a semicolon. Blanks may be used freely to
separate tokens, and at least one blank or a line return must separate tokens in the case where one
token ends with an alphanumeric (letter or digit), and the next one begins with an alphanumeric.

In the assignment statement, the identifier name is of arbitrary length, starting with, a letter
and contains letters, digits or a special break character (usually an underline chalchtike).
some other languages, @i identifier is not associated with a particular datatype. Instead, the
type of the value in aariable associated with the identifier is determined by the HEsev
assigned:

abc = 4; $abc nav contains an integer
abc =4.5; $abc nav contains a real

The abwe lines contain comments which are introduced by the $ charAditéext following a $
sign on a line is ignored. Another way of putting this is that the $ sign acts as an end of line signal
to the compilerLines with a $ in column 1 are entirely ignored (except for being listed).

The datatypes we shall consider initially are getereal and string. Integer values are of
unlimited range (actually limited only by thealable memory). Real values¥yeme range and
precision defined by the implementation, and strings are arbitrary length sequences of characters
(like nmost other languages, SETL does not exactly define the setitsfbée characters, which
depends on the implementation).

Corresponding to these three datatypes are constant denotations or literal values, which may be
used whereer the corresponding value is required. The following are examples of valid constants:

123 $integer
134134145767671 idteger
3.1415926535 $eal
0.45E+13 $eal
“abc’ $string
123 $string
“don’t’ $ string

The last example shows\Wu@ sngle quote can be included in a string by writing tsmote marks

Chapter 1 The SETL Programming Language Page 4

togetherThe null string which contains no characters is written as ”.

Expressions areuiit up from constants, identifiers and operators, using parentheses for
grouping in the usual mannerhe following list shavs the most commonly used binary operators,
which compute a result from tnoperand values:

Binary Inteyer Operators

+ Integer addition

- Integer subtraction

* | nteger multiplication

/ Integer division, real result
div Integer division, integer result
*x Integer exponentiation

mod Integer remainder

+ Real addition

- Real subtraction

* Real multiplication
/ Real division

*x Real exponentiation

Binary String Operators

+ String concatenation

The meaning of an operator depends on the datatypes of the operands. For example, + means
either integer addition, real addition, or string concatenation, depending on the opéyatids.

metic operators must be applied to either real ogert@perands. If an operation is to be-per
formed on one integer and one real value (for example, addition), théieaher fix operators

must be used as described lafdre one exception to this rule occurs with exponentiation, which
allows a real value to be raised to a nogatiege integer value.

Some operators (such div) and other tokens in SETL are written in capital letters in this
book. This means that there keywords, and are written in capital letters to distinguish them
from identifiers. Any such names are reserved words, in the sense thattie not be used as
identifier names. A complete list of reserved wordsvsrgin Appendix nn. When the program is
actually entered, the compiler ignores cases, so that bothedsgovds and identifier names may
be entered in upper case or lower casevem & a mixture of cases.

The string concatenation operator (+) join® fivings together:

Chapter 1 The SETL Programming Language Page 5

a ='abc’;
b:="cd;
c=a+h $cnow oontains 'abccd’

A special set of operators, called assigning operators, not only yield a vatuaglsb store the
value into the left operand, which must be appropriate for this purposeafe.igentifier). There

is one such operator corresponding to each binary opefammname of an assigning operator is
formed by appending the characterda the usual operator name&or example, += is the addi-

tion (or concatenation) assigning operator which may be used as shown in the following example:

As indicated by the last line alm assigning operators can be used within an expression, as well
as standing alone in a statemeAttually, the assignment operator itself is a special case of an
assigning operatpand may also be used within an expression:

a=3+b=5+2 $a=10,b=7

Unary operators compute a value from a single operand and are written in front of the operator:

Unary Intgger Operators

+ Positive (no effect)

- Negaion

str String equialent

float Corverts string to real
type Gives gring 'INTEGER’

Unary Real Operators

+ Positive (no effect)

- Negaion

ceil Ceiling

floor Floor

str String equalent

fix Truncates to corresponding integer
type Gives dring 'REAL

Unary String Operators

Chapter 1 The SETL Programming Language Page 6

Number of characters (integer)
val Real or integer equalent
type Gives gring 'STRING’

The str operator yields a string representation of an integer or real opekérdcorverts a
numeric string into its corresponding real or integer value:

a=str(2+3); $a='%
b :=val '1234; $b=1234
c =str 003.000; %='3.0¢

Ceil applied to a real ges the smallest integer which is not less than the operand]aordyives
the largest integer which is not greater than the operfindtorverts a real to a corresponding
integer value by dropping the fractional part, if.an

a =ceil 3.7; $a=4.0
a =ceil -3.7; $a=-3.0
a = floor 3.7; $a=3.0
a =floor -3.7; $a=-4.0
a =fix 3.7; $a=3.0
a =fix -3.7,; $a=-3.0

Strings may be sliced to extract substrings. The format is:
string(a..b)

The epressions a and b are integers which select the starting and ending character in the sub-
string. For example:

abc ='the quick brown fox’;
cde =abc(5..8); &de="quic’

The following default slices are allowed:

abc(b) $same as abc(5..5)
cde = abc(5); $cde="q’
abc(5..) $means 5 to end of string

cde =abc(5..); $cde="quick brown fox’

These substring notations can also be used on the left side of an assignment statement. Note from
the following examples that such assignments can shorten or lengthen strings:

Chapter 1 The SETL Programming Language Page 7

abc ="hello’;
abc(3..4)='xyz’; $ abc="hexyzo’
abc(4..)='m’; $ abc="hexm’

1.3. Errors & Omega

Improper operations, such as applying the / operator to string operands, normally eause ter
mination of the program with an appropriate error message. In some implementations, there may
be a provision for optionally continuingeeution following such an errpthe details of such pro-
visions are considered to be part of the implementation rather than the SETL languagitself.
this book, the phrases "causes an error" and "error resuli@y/satefer to such a situation, and the
details of the implementation must be consulted to determine exactly what happens.

In addition to this class of errors, there is a special undefined state arallgdr omega).
Identifiers which hee rot been set to gnparticular value are in this undefined state, and may be
thought of as containing th@lkeom, although strictly speakinggm is not a value (but rather the
absence of anvalue).

If an identifier contains a value (other tham), it may be reset to an undefined state by an
assignment of the form:

a =om;$ a s now undefined

Any attempt to perform an operation on the undefingldes causes an errdthe one exception to
this rule is that there is a ptision for using the equality operator to test whetheweangialue is
undefined or not.

1.4. Tuples

A tuple is an ordered sequence of zero or matees. Tples in SETL are similar to one
dimensional vectors in other programming languages, but are more flexible.

A tuple may be created using the tuple brackets [and]. The followangpde assigns a
four element tuple to the variable associated with identifier t:

t:=[1, 9, abc’, [1, 5]];

As shavn, the tuple can contain arvalues, gen ather tuple values, and may be of arbitrary
length.

In some implementations, the characters for the tuple brackets may vatlélele To deal
with this possibility the alternate sequences (/ and /) can be used as replacements, seghe abo
assignment could ka been written:

t:=(/1,9, abc’, (/1,5/)/);

Individual elements of a tuple can be extracted by subscripting, and subscripting on the left side of
an assignment allows a specified element to be modified:

Chapter 1 The SETL Programming Language Page 8

t:=[1,9,abc’def];
X =1(3); $x ="abc’
t(4) =0; $t=[1,9,abc’,0]

Note that ordinary parentheses are used for subscripting, not tupletsralfla non-existent ele-
ment (e.g. t(7) in the abe @se) is selected, them is obtained as a result. It is perfectly valid to
assign a value to a non-existent element, and may result in increasing the length of the tuple:

t:=[1,9,abc’,0];
t(5) =5; $t=[1,9,/abc’,0,5]

If such an assignment creates "holes" in a tuple, the missing eleatees are set to undefined
(i.e. to containom). There is no maximum size of a tuple, although tvelable memory will
limit the size in practicelt is possible to undefine a previously defined element by assigning
to it. This will either create a "hole" in the tuplalwe, or it will decrease the length of the tuple in
the case where the last element is undefined in this manner.

The following operators can be applied to tuple operands:

Binary Tuple Operators
+ Tuple concatenation
Unary Tuple Operators

Index of highest defined element
type Returns the stringuple’

The concatenation operator + joinsotwples end to end to yield ameuple as shown by the fol-
lowing example:

a=[1,2.3];
b =1[6,7];
c=a+h $c=[1,2,3,6,7]

The cardinality operator #\gs the index of the highest defined element. This will be equal to the
number of defined elements in the case where the tuple contains no "holes".

Subtuples can be extracted using a notation similar to that used in extracting a substring:

a=[1,2,3,4,56,7,8,9];
b :=a(6..8); $=[6,7,8]

Chapter 1 The SETL Programming Language Page 9

c=a(7..); $c=[7,8,9]

d:=a(8..11); % =[8,9]

These subtuple operationstend to use on the left side of assignments in the same manner as for
substring assignments:

t:=[1,2,3,4,5,6];
t(2..5) =[7,10]; $t=[1,7,10,6]
t(3..) =[1: $t=[1,7]

The null tuple (which contains no elements) is written]agd. a tuple with no elements. If the #
operator is applied to a null tuple value, the result is z&rtypical technique is to create tuple
values by first assigning][to a variable, then xecuting a series of assignments which define the
required element values.

A special notation is &ilable for constructing tuples whoselues consist of grlar
sequences of integers as shown by the following examples:

[1..10] samas [1,2,3,4,5,6,7,8,9,10]
[1,3..12] sameas [1,3,5,7,9,11]

[2..1] sames]

[9,8..1] samas [9,8,7,6,5,4,3,2,1]
[9,7.1] samas [9,7,5,3,1]

The general form of this abbreviation is:
[first,next .. last]

The expression first gis the first value generated in the sequence. Kpeession next implies

both the direction of the sequence (ascending or descending) and the step betweewnesdeeessi
ments. The xpression last ges the limit value (either the maximum for an ascending sequence,

or the minimum for a descending sequence). The next expression, together with its preceding
comma, may be omitted for ascending sequences with a step of 1. As we shall see in a later sec-
tion, tuples of this type play an important role in constructing loops.

Tuples may appear on the left side of an assignment statemendimpydhat the right hand
side is a tuple value. The effect is to perform a sequence of assignments:

[a,b,c] =s; $a=s(1), b=s(2), c=5s(3)
[dl_!ﬂ =S, $d = S(l), f= S(3)

[ef] :=[2,4]; $e=2,f=4

[a,b] =[b,a]; S$interchange a and b

All the components in the tuple on the left side mustaiielassignment left sides,,@s siovn in

Chapter 1 The SETL Programming Language Page 10

the second example al® a ninus sign may be used to indicate that the corresponding assign-
ment is to be skipped.

One important point is that SETL treats tuplesases when it comes to assignments. Con-
sider the following sections of code:

abc =12;
cde = abc;
abc =abc +2; $cdestill=12

abc =[1,2,3];
cde = abc;
abc(2) = 0; $cde still=[1,2,3]

In SETL the tvo sequences he& dmilar effects. If you expected cde to change in the second
sequence, then study it carefulliynot, then you hee the correct idea already.

The operatowith adds a single element at the end of a tuple and is most often used in its
assigning form as shown in the following examples:

a =[1,5,10];
b:=awith 6; $a=[1,5,10], b=[1,5,10,6]
awith:=7; $a=[1,5,10,7]

The binary operatdiromb removes the first element of a tuple (i.e. the element at thgnining

of the tuple) and assigns it to the left operand. The right operand, which contained the original
tuple operand is reassigned to contain the remainder of the tuple afteingrttos element.

fromb is most often used on its own as a statement form, but it can also be used wikprean e
sion, in which case it yields the first element as its value (as well as performingothesign-
ments). The binary operatémome is similar except that it remves the element from the end of

the tuple. If fromb or frome is applied to a null tuple value, them is obtained and the tuple
value is unchanged:

a=[11,26,37,17];

b fromb a; $b=11, a=[26,37,17]
c fromb a; $c=26, a=[37,17]
dfromb a; $d =17, a=[37]
efromb a; $e=37, a=[]

f fromb a; $f=om, a=[]

The operatorsvith:= andfromb used in conjunction al@ a tuple to be used as a queuwdth:=
being the queue operation anomb the dequeue operation:

Chapter 1 The SETL Programming Language Page 11

a=[1

g with:=5; $q=[5]

qwith:=7; $q=[5,7]

efromb q; $e=5,q=[7]

efromb q; $e=7,q9=[]

efromb q; $e=om, g=[] (queue empty)

In a similar manneithe operatorsvith:= andfrome used in conjunction ale a tuple to be used
as a stackwith := being the push arfdome being the pop:

s=[I;
swith:=5; $s=[5]
swith:=7 $s=1[5,7]

efromes; $e=7,s=[5]

efrome s; $e=5,s=]]

efrome s; $e=om, s=[] (stack empty)
1.5. Sets

Finally we get to the datatype in SETL whiclves SETL its name. A set is lka uple,
except that it is unordered, and aeagi value can appear only once (i.e. an attempt to placdue v
into a set more than once is ignored). Sati@s are written using a similar notation to tuples,
except that the set brackets are { and }.

s ={1,2/abc’};
t:={2,1/abc’};
u:={2,1/abc,2}; $s=t=u

In some implementations, the set bretckharacters may not beadable. To deal with this possi-
bility, an dternate notation isvailable which uses << as the left set breicknd >> as the right set
bracket, so the abe examples could ha been written:

s =<<1,2,/abc’>>;

t:=<<2,1,abc>>;

u:=<<2,1’abc’,2>>;

The following set of operators can be applied to set operands:

Binary Set Operators

+ Set union

Chapter 1

*
with
less
from

Unary Set Operators
#

type
arb

The SETL Programming Language

Page 12

Set difference

Set intersection

Add one element to a set

Remore an dement from a set

Remwe an dement and assign remainder

Number of elements as integer
Yields the string 'SET’
Select arbitrary element

The operators + * and applied to sets perform standard set operations of union, intersection and
difference as shown by the following examples:

a={1,2,3,4};

b :={3,4,5,6};

c=a+h $c={1,2,3,4,5,6}
c=a*b; $c={3,4}
c=a-b; $c={1,2}

The operatorsvith andlessadd or remee an dement from a set and are most often used in their
assigning formsWith has no effect if the element is already present|esghas no effect if the
element is not present:

s ={5,2,8};

a=swith7; $s={5,2,8},a={5,2,7,8}
swith:=6; $s={5,6,2,8}

swith:=5; $s=1{5,6,2,8}

sless=5; $s={6,2,8}

sless=0; $s=1{6,2,8}

Arb selects an element from the set in a non-deterministic mdnrether words, there is noay

to predict which element will be selected. It magrebe he case that a different value will be
selected in different runs of the prograrereif no changes are made to the program or datd.

is thus used precisely in those cases where it does not matter which elemeids plotopera-

tor from picks an arbitrary element from its right operand in a similar mabuaealso assigns the
set with this element rermed as he nev value of the right operand, the picked value being
assigned to the left operanBoth arb andfrom yield om if applied to a null set, and in the case
of from, the set value is unchanged.

Chapter 1 The SETL Programming Language Page 13

a ={1,5};
b:=arba;, $b=1or5
cfrom a; $c=1(or 5!

$a={5} (or {1})
dfrom a; $d=1 (f c was 5)
$d=5 (f cwas 1)
$a={}
efrom a; $e=om, a={}

The null set is the set which contains no elements. It is written as {}, i.e. a set with zero elements
listed. The# operator applied to the null set yields zefotypical technique is to build a sedlue
by first assigning } to a variable, and then usingith := to add the desired elements to the set.

As for tuples, an abbreviated form is permitted for constructing sets of integers:

{1..10} means {1,2,3,4,5,6,7,8,9,10}
{3,5..11} means {3,5,7,9,11}

The general form of this construction is exactly the same as that used in the tuple case:
{first,next .. last}

As with tuples, the second expression indicates the direction and step size, althougirdsackw
sequences are not usually used in the set case, since the order of the elements is not meaningful in
ast:

{1,2..10} samesetas {10,9..1}

1.6. Maps

A map in SETL is a set all of whose elements are tuples of length 2 (called pairsjaifrer e
ple, the following assigns a map value to the identifier sqroot:

sqroot ={[1,1], [4,2], [9,3], [16,4]};
If a set has this special form, its values may be accessed using map notation:

X :=sqroot(9); =3
The actual meaning of such a map reference is to search the set for the pair whose first element
matches the géen domain \alue (9 in this case), and then the second element of this pair is yielded
as the rangealue. Mapreference notation can also be used on the left side of an assignment, the

effect is to modify the value of the map appropriately:

sqgroot(25) = 5; $adds the pair [25,5] to sqgroot

Chapter 1 The SETL Programming Language Page 14

The act meaning of this assignment is to computeva map value by first removing all pairs
starting with the gien domain value (there were none to remdn the abee example), and then

to add the specified paiOften maps are constructed by a sequence of assignment staterments. F
example, the map sqroot couldveaeen constructed by the sequence:

sqroot ={};
sgroot(1) = 1;
sqroot(4) = 2;
sqroot(9) = 3;
sqroot(16) = 4;
sqroot(25) = 5;

Reference to a non-existent element of a map (e.g. sqroot(19) in the exaraplg/igidsom.

Maps are a general assoadiattkvice, and represent one of the fundamental data structuring
devices in SETL.For example, a structure represented as a one dimensieciainin FORRAN
is probably better treated as a map fromgats in SETL. Actually it is usually possible to repre-
sent data in a more directaw than integer indexing. For examplevegi a dass of students, and
associated test scores, rather than useveetors based on irger indices, one containing the
names and the other containing the scores, it is morergent to represent this data as a single
map from student names onto integer scores.

For the map notation shown al® an eror results if there are sruplicate elements in the
domain, i.e. more than one pair with the same first elerrsnev Havever, it is possible for a
map to contain such a duplication, using set ketck} i nstead of parentheses to access the ele-
ments. The result of such a reference is to yield the set of all rahges\corresponding to the
given domain value:

a={[1,2], [1,3], [2,4], [5.5], [2,7], [2,8]};

c:=a(l); $causes an error
d=a{l}; $d={2,3}

e =a{5}; $e={7}

g =a{7}; $g9={}

Maps which heae duplicated values lik this are called multialued maps, and the corresponding
reference is a multi-valued reference. This form can also be used on the left side of an assignment:

a={[1,0], [1,2], [1.5], [2,5], [2,7]};
af1}:={5,7}; $ a={[1,5], [1,7], [2,5], [2,7]}

Since maps are just a special case of sets, all the operators which apply to sets (such as + for set
union) can also be applied to maps. In addition the following special operators

are provided for operating on maps:

Chapter 1 The SETL Programming Language Page 15

Binary Map Operators
lessf Remaues pairs for one domain value
Unary Map Operators

domain Yields domain of a map
range Yields range of a map

Domain andrangeyield the set of values of the first element or second element reshecfiall
pairs. Lessfcreates a me map in which all pairs starting with a particuladwe are remeed, and
is most often used in its assigning form. All three operators cause an errgrafehagpplied to a
set which is not a map, i.@ st which contains at least one element which is not aTarefect
of lessfcan also be obtained by an explicit assignment as shown in the following examples:

a={[1,2], [1,3], [2,2], [2,4], [3.6], [3,7]};

b ;= domain a; $b={1,2,3}

C :=rangea; $c={2,3,4,6,7}
alessf=1; $removes [1,2] and [1,3]
a(2) =om; $removes [2,2] and [2,4]
a{3} :={}; $removes [3,6] and [3,7]

1.7. Conditional Statements
Conditional statements allothe flov of control to be modified by the use of tests.

1.7.1. If Statements
Theif statement allows one of twpaths of control to be selected on the basis of a test:

if test

then
statement;
statement;
statement;

else
statement;
statement;
statement;

end if;

The test either succeeds or fails. If it succeeds, then the sequence of statements thger the
(called a block) isxecuted. If the test fails, then the block fellmg theelseis executed. Note that
since @ery statement is terminated by a semicolon in SETL, there must be a semicolamnfplio

Chapter 1 The SETL Programming Language Page 16

the last statement of each block. Since the eifticenstruction is also considered to be a state-
ment, it is also terminated by a semicolon. The factithatconsidered to be a statement means
thatif's can be nested, ahappearing as one of the statements irthiea or elseblock. This nest-
ing can be carried to gepth.

The end if; which terminates th& statement can be written inyaof the following man-
ners:

end;
end if;
end if tokens;

In the last case, tokens is one or morestskcopied from the text following the corresponding
They must exactly match or an error results. The use of these identifying tokens hefeEpto k
ends graight and is particularly valuable wheni&or similar construction is lengthy:

ifa>b
then

(long sequence of statements)
endifa>1D

The elseand its following block are optional and may be omitted. If tre omitted and the test
fails, then control passes out of tifievhich then has no effect.

1.7.2. BoolearValues & Operators

The tests used iifi statements and other similar constructions are usually constructed using
one of the test operators. The faliog list indicates the condition under which the test performed
by the operator succeeds:

Binary Test Operators

= Types and values match
/= Types or values do not match

> Left operand greater than right

>= Left operand greater than or equal to right
< Left operand less than right

<= Left operand less than or equal to right

in Left operand is an element of right

notin Left operand is not an element of right
subset Left operand is a subset of right

incs Left operand includes right

Unary Test Operators

Chapter 1 The SETL Programming Language Page 17

even Operand isen

odd Operand is odd

is__integer Operand is integer type
is__real Operand is real type
is__tuple Operand is tuple type
is__set Operand is set type

is_map Operand is map (set of pairs)

The equality and inequality comparisons may be used to compare values tgparfor exact
identity, including testing for equality witbm. Two tuples are equal if each pair of elements in
corresponding positions are equalolsets are equal if tlyehavethe same number of elements,
and eery element of the left operand is contained in the right operand.

The remaining comparisons apply only to numeric values and to strings. In the string case,
the ordering is lik a elephone directory (e.g. "ab" is less than "aba"). The order among characters
in the set depends on the implementation.

The membership tests andnotin require that the right argument is a tuple or set and test
for exact equality between the left operand and one of the elements of the right operand.

The operatorincs andsubsetcan only be used if both operands are sets. The operators are
inverses of one anothgare. asubsetb is equivalent to bincsa.

The operatoredd andeven can only be applied to an integer operand and test \iilal-
ity by two.

The is__type operators test to see if the operand is of the specified typte that gen
though there is no type map in SETL (all maps are sets)s_themap operator is eailable, and
tests whether the operand has the form of a map (i.e. is a set all of whose elements are pairs).

Test operators are not restricted to appearing in a context where a igwtdted. If thg are
used in other situations (e.g. as the right hand side of an assignment), then angpetial \al-
ues is yielded:

TRUE if the test succeeds
FALSE if the test fails

These values are of type boolean and are distinct frgnother values. The following operators
may be applied to boolean values:

Binary Boolean Operators

and Logical and of tw» boolean values
or Logical inclusve a

Chapter 1 The SETL Programming Language Page 18

Unary Boolean Operators

not Logical ngdion
type Yields the string 'BOOLEAN’
is__boolean Tests whether an operand iskmfoleantype

The operatorand yields TRUE if both its operands are UR and FALSE otherwise. OR yields
TRUE if either or both of its operands are TRUE and FALSE othervfisel. does not edluate its
right operand if the left operand is FALSE and similantydoes not ealuate its right operand if
the left operand is TRUE. This means that a compound test of the following tygd ie BETL.:

if a=0andb/a> 3then...

since the division definitely will not be performed if the divisor a is zero.
The operatonot yields TRUE if its operand is FALSE and FALSE if its operand is TRUE.

If an expression other than a test constructed with a test operator appears in a tgst conte
then the value must be either TRUE (in which case the test succeeds) or FALSE (in which case the
test fails). Aty other value used in a test context causes an error.

1.7.3. CasésStatement

Another form of conditional branch is ptided by the case statement, which has theviello
ing form:

case of

(testl): blockl

(test2): block2

elseblocke

end CASE; $or simplyend;

This statement causes one of the specified blocks (sequences of statementggdotée. eThe

block which is &ecuted is the one whose corresponding test succddu=elseblock is executed

if all the tests fail. If more than one test succeeds, then only one of the blockslited, the
choice of which block toxecute being made in an arbitrary manner (in the same sense that the
arb operator selects an arbitrary element from a set).

A very common use of theasestatement imolves tests of the forn¥x where t is a quantity
to be tested, and the variousuwes of x are attached to statements which are tedoated if t has
the specified value. A special abbreviated form ofctmestatement is\ailable for this purpose,
which has the form:

caseexpressiorof

(constl): blockl

(const2): block2

elseblocke

end case $ or end; or end casdokens;

Chapter 1 The SETL Programming Language Page 19

In this case, thexpression is wuated, and then compared with each of the constants. The block
whose associated constant value matches is steented. If no value matches then #iseblock
is executed.

In either of thecaseforms, theelseand its associated block may be omitted. If none of the
branches of a&lsewith no elseblock match, then>ecution continues with the next statement
without executing aty of the blocks.

More than one test or constant can be attached t@a gise branch by:

(el,e2,..en): block
(testl,test2,..testn): block

in which case the block will bexecuted if the expression matchesy/af the gven values or if
ary of the tests succeed.

1.8. Loops

A loop is used where a block of statements is taxbeuged repeatedly until some specified
condition is met, or for some specified number of times. One form of a loop in SETL is:

loop iteratordo
block
end loop $orend; or end looptokens;

An alternate form (with the same meaning) is:

(iterator)
block
end; $ or endtokens;

In the latter case tokens, ifvgn in the terminatgrdoes not include the left parenthesis used to
open the loop.

Either form causes the block of statements toXeeuted repeatedly under control of the iterator
Within the body of the loop, sirstatements can be used, as well a3 $pecial statements:

continue;

continue tokens;
Execution of thecontinue statement causes the rest of the statements in the body of the loop to be
skipped, and»ecution continues with the reiteration (if there is one). The form in which &is
are copied from the correspondif@pp statement is useful where loops are nested, to specify
which loop is being continued.

quit;
quit tokens;

This statement causegeeution of the loop to be immediately terminated, and control resumes
with the statement past tlead loop. As with continue, the form with tokens copied from the
loop statement may be used to indicate which loop is to be terminated when loops are nested.

Chapter 1 The SETL Programming Language Page 20

The iterator itself has one ofvaeal forms. A full description of iterator forms appears in
chapter 5. In this chapter we discuss the ftvms which are most commonly used:

for x in set
for x in tuple

In these forms, set and tuple aspressions which yield values of type set and tuple resggci

and x is the iteration variable, which is set to suceessilues from the set or tuple. In the case of

a tuple, the number of iterations is equal to the xnalethe last defined element, and the element
values are selected in sequence. In the set case, the number of iterations is equal to the number of
elements in the set and the order in which the elements are taken is arbitrary (in the same sense
thatarb yields an arbitrary element).

(for xin s)
print (x); $ prints elements of s
end loop;

loop for x in [1,10,50]do
end loopx;

The iteration variable x can actually beyaslid assignment left hand side. In the case of the set
iterator, this provides a carenient notation for iterating through a map:

(for [number,rootjfin sqrt) ...

If the set is null, then the loop body is naeeuted at all, and control skips immediately past the
end.

Iterations through a sequence of gees (similar to the&o or for loops of other languages)

may be coweniently specified using the special form of tuple constructor for constructing tuples
of integers:

loop for i in [1..100]do
(statementsxecuted 100 times withiL,2...)
end loop

(for iin [1,3..99])
(statements»ecuted 50 times withA1,3,5..)
end for i;

An interesting possibility in SETL is to use a set former for such loops:
loop for i in {1..100} do

(statementsxecuted 100 times)
end loop

Chapter 1 The SETL Programming Language Page 21

This loop has a similar fefct to the one using a tuple former except that there is no implication as
to the order in which the 100 possible values of i are selected. Good SETL style suggests using
the set former except in cases where the order is significant,vitiding unnecessaryverspeci-

fication.

Either of these iterator forms may be combined with a test which selects only caltias v
meeting some condition to be included in the iteration:

(for xins|x>5)..
(for iin[1,2..10] | f(i) > 0) ...

The | is read "such that" and may be replaced bydiedcd st if the vertical bar character is not
awailable. The effect is to skip grvalues not meeting the testorFexample, the following loop
executes 5 times withven values of i

(for iin {1,2..10} |eveni)end;
Three other loop forms which can be written are:

loop whiletestdo $ loop while test succeeds
end loop $orend; or end looptokens;

loop until testdo $ loop until test fails

end loop $orend; or end looptokens;
loop do $ indefinite loop
end loop $orend; or end looptokens;

The first of these forms, thehile loop, iterates the body of the loop until the specified condition
is FALSE. Thetest is performed at the start of the loop, so that it is possible to skip the loop
execution entirely if the test condition is FALSE on initial entry to the loop.

The second form, thantil loop, iterates the body of the loop until the specified condition is
TRUE. The test is performed at the end of the loop, so the body of the loxgrigesl at least
once, &en if the condition is TRUE the first time.

The third form is an indefinite loop. The loop will continue keoaite until it is terminated by
executing astop or quit statement or gotowhich leads out of the loop.

As with the iterator form of the loop, parentheses can repladedhenddo keywords:

(while test) $loop while test succeeds

Chapter 1 The SETL Programming Language Page 22

end; $ orendtokens;

(until test) $loop till test fails

end; $ orendtokens;
() $ indefinite loop
end;

1.8.1. Se®& Tuple Formers

So far, we haveformed sets by enumerating the elements. The set former is a special form
of a loop which computes a set value with an iteration. The form is:

{expression : iterator}
The iterator has exactly the same form as a loop itemtoept that the éyword for is omitted.

The effect is to iterate the calculation of thg@mession, and build a set from the values. The most
frequently used form irolves a set or numeric iterator as shown by the following examples:

{n:nin {1..100}} $ integers from 1 to 100
{x**2,x] : x in{1..5} $ square root map
{a:ainy| a5} $ elements > 5

The following abbreiation is permitted, allowing expression to be elided where it corresponds
exactly to the loop variable of an iterator provided that the iterator contains st)| dause:

{ain expr | c} ${a:ain expr|c}
fain[xy..z]|c} ${a:ain[xy..z]|c}

Notes:

If two or more iterations produce the sansue in a set formethen only one copof the
value is placed in the set.

If the iterator terminates after zero iterations, ieapression is ner calculated, then the
result is a null set.

Error termination results from an attempt to plageinto a set.

Tuple formers are identical in formubwritten with tuple brackets, rather than set betek
For a tuple formerthe successe wvalues, which may include duplicated values, are placed into the
tuple in sequence:

Chapter 1 The SETL Programming Language Page 23

[0:iin[1..100]] S$tuple of length 100, all 0
[xins|x<($ tuple of ngaive dements of s

1.8.2. QuantifiedTests

Two special forms, called quantified tests, can be used inxéemauiring a test, or to gen-
erate one of the twwalues TRUE or FALSE in other contexts:

existsiterator | test
forall iterator | test

The existstest eecutes an implied loop specified by the iteratanich has the same form as a
loop iteratoy except that the éyword for is omitted. On each loop, the test after the y@uated.

If the test succeeds, then the loop is immediately terminatadndethe loop variable set to the
value which caused the test to succeed, an@xmststest itself succeeds. If the specified tedsf

for all iterations of the loop, then the loop is terminated, setting the iteration variable to undefined,
and theexiststest fails.

In the case of thforall test, the loop is terminated as soon as the test fails, leaving the itera-
tion variables set to thealues which caused thailure. Ifthe test succeeds for all loops, then the
iteration variables are set to undefined anddhal succeeds.

The following are some examples of the use of these quantified tests:

s ={1,2,10,20};

t:=[1,2,10,20];

if existsxins|x>3
then $ will be executed with x=20 or 10
else $ will not be executed

end;

if existsxint|x>3

then $ will be executed with x=10
else $ will not be executed
end;

if forall xina|x<3

then $ will be executed with x=om
else $ will not be executed
end;

if existsxint|x>30
then $ will not be executed

Chapter 1 The SETL Programming Language Page 24

else $ will be executed with x= om
end;

if forall xint|x<10

then $ will not be eecuted
else $ will be executed with x= 10
end;

1.8.3. CompoundOperators

Another specialized form of loop in SETL is the compound oper@&aompound operator
can be formed from grbinary operator by appending a slash / to the name of the opesatdr a
compound operator can be used in one ofapression forms:

bop/ exprs
expre bop/ exprs

The efect is to apply the binary operator bop to the sequence of element values el)g#ts,in e
which must be a set or tuple, as follows:

bop/ eprs means el bope2 bope3 ...
expre bop/ gprs means @re bop el bop e2 ...

If the compound operator form is used with a null set or null tuple, then the resytasire the
second form andm in the first form where expre is omitted. Thxpre typically functions as an
identity element in the second form. The following examplesvdtimw the compound operator
forms can be used:

+/t $sum of values in tuple
O+/t $same, but 0 rather tham for []

*/[ain s|3in a]
$ computes intersectiorver al sets in s (s is a set of sets) which contain the value 3
T+t $builds string from tuple of characters

1.9. Input/Output
There are three distinct types of input/output in SETL:

Stream Input/Output
Stream input/output is used primarily with "card reader" input files and "printer" output
files, and is intended for direct input of human prepared input, and output of human readable
printout. This type of input/output is oriented to transmission o¥iddal values in string

Chapter 1 The SETL Programming Language Page 25

form.

Recod Input/Output
Record input/output deals only with strings. An input operation obtains a record as a string,
and an output operation outputs a string as a single record. Record input/output is intended
for communication with programs written in languages other than SETL, and is also used to
read directly prepared input if such input is more naturally treated as strings, rather than as
individual items as in the stream case.

Binary Input/Output
Binary input/output deals with SETlalues of ap type and transmits then in a specidi-ef
cient internal form.Binary output is only used to output values which are to be read into
either the same SETL program, or some other SETL program, using binary input state-
ments.

Full details of all three kinds of input/output argegi in the chapter dested to this purpose.
In this introduction, we describe only the most frequently used input/output calls for reading stan-
dard "card reader" input, and generation of standard "printer" output.

Theread procedure is used to read values from data lines from the standard input source in
stream mode:

read(lhs,lhs,...);

This procedure call reads successialues separated by blanks or commas. Dataeg are
entered in the following form:

Integers are entered as strings of digits preceded by an optional sign.

Reals are entered in the same format as real denotaxiosgt ¢hat an optional preceding sign is
permitted.

Strings can be entered in the same format as string constants in SETL, including the surrounding
guotes. Thg may be split across line boundaries. In addition, strings whigle liee form of

SETL identifiers (i.e. start with a letter and contain only letters, digits and the underline character)
may be entered without surrounding quote matkgch string items may not be split across line
boundaries.

An * in the input stream causes the corresponding value to be set to undfimed

The values TRUE andAESE are entered as #T and #F (or #t and #f, either upper or lower case
may be used).

Set values are input using either { } or << >> set brackets. The list of values in the set are in the
format described in this section, and may be separated either by blanks or by commas.

Tuple values are input in a similar manner using [] or (/ /) brackets and in addition, simple paren-
theses are accepted as tuple brackets in input data.

The arguments used in the callread are ay valid assignment left hand sides, and the
effect of theread call is to input the appropriate number of items from sucoegsput lines (as
required) and makthe assignments in sequence.

The special symbatof (actually it is a special system function call) may be used as a test
following aread call. This test succeeds if the last read attempted to read past the end of file, and

Chapter 1 The SETL Programming Language Page 26

fails if the end of file vas not encountered. fnnput values which were novalable because of
encountering the end of file cause the corresponding variables to be set to ur(deiinethe
following example shows oa sries of input items (up to the end of file) can be stored in a
tuple:

input_data=1[];
loop do
read(next);
if eof then quit; end;
input_datawith := next;
end loop

Thegetfunction may be used to read input lines one at a time as strings. This allows string data to
be entered without surrounding quote marks, and the program determines the required format of
the input. Thegetfunction must be provided with the file name of the file to be réaaull string

may be used to specify the standard input file in an implementation independant manner:

get(”,Ihs);

This call togetwill cause the ne input line to be read from the standard input file and assigned as
a gring value to lhs.Eof is set as described almb indicate whether or not the call attempted to
read past the end of file.

Printed output is generated with thent function, which gies a Ist of items to be printed
in stream mode:

print (expression,expression, ... expression);
Each expression ivauated and printed in a manner appropriate to its datatype as follows:
Integer
The integer value is cwarted to a string of decimal digits of appropriate length with no leading
zeroes (ecept in the case of zero itself). A preceding minus sign is used if the valugditvene
(but positive values do not generate a plus sign).

Real

Real values are cuwerted either in fixed point format or exponent notation, dpending on the range.
The number of digits is chosen to be appropriate to the agowitcwhich real values are stored.

String

The handling of strings depends on whethey dgpear directly in the print list, or as elements of
tuples or maps. If theappear in the print list, tlyeare printed literallywithout surronding quotes,

and without an special treatment of internal quotes. Strings which appear as elements of tuples
or sets are treated in a different maniffethe string values are of the form of identifiers (starting

Chapter 1 The SETL Programming Language Page 27

with a letter and containing only letters, digits and the underline), themline ig printed literally
All other string values appearing as elements of sets or tuples are printed with surrounding quotes,
and ay internal quotes are printed asotauccessie quotes.

Boolean

The boolean values TRUE and FALSE are printed as #T and #F redyecti
Om (undefined)

An undefined value is printed as a single * (asterisk) character.
Tuples

Tuple values are output as a series alfigs separated by single blanks and surrounded by tuple
braclets [], or in implementations which do notVetese characters, simple parentheSdse
values within the tuple are ceerted indvidually, strings being output with surrounding quotes
unless thg havethe form of identifiers.

Sets

Sets are output in the same manner as tuples except that the list of values is surrounded by set
brackets { }, or by << and >> if these characters arevailadle.

>From this description, it can be seen that the format used is essentially exactly compatible
with the input format accepted igad with the exception that strings appearing directly in the
print list are printed without quotes. This discrepaaitows the comenient output of titling infor
mation as in:

print (Value of’, a,’ +', b, "=, a+b);

Each nev call to print causes a meline to be startedBlanks are inserted to separate conseeuti
values, and if the alue to be printed does not fit one a single line, line returns are inserted in an
attempt to mad the output as readable as possitfialling print with a null agument list gener

ates a blank line:

print(); $Print blank line
or
print ; $ Print blank line

The eject procedure, which uses nogaments, causes a page eject, anditleeprocedure sets a
title string which is printed at the head of each page of output. In the absence of a cditlo the
procedure, the printout resulting from thant procedure prints continuouslyu@ the creases)
unless thesject procedure is used. After callitile, automatic page ejects are generated when the
page is full (the appropriate definition of full being dependant on tlgoament). In titling

Chapter 1 The SETL Programming Language Page 28

mode, all page ejects result in printing the title together with a page nunbeactual printout
starts on the third line of each page. More than one cditli¢ois permitted, the title being
changed, but the page numbering is undisturl®edall to title causes an automatic eject, so that
the nev title is established immediatelalling title with no argument disconnects titling mode
and returns to the normal (continuous printing) mode.

eject $ eject to nev page
title(string); $set title to string
title; $ disconnect titling mode

1.10. Labelsand the Goto Statements
Any statement in SETL may be labeled:

label: statement;
where label is an identifier not used foyather purpose. Thgoto statement:

goto label,
causes control to pass to the labeled statement. Ay ilmagauge which provides structured con-
ditionals and looping statements, the use ofgbi® should be minimized. The obvious restric-
tions on the use ajoto’s (e.g. against jumping into loops, or intecasestatement from outside)

apply, dthough it is permissible to jump out of loops and other structures.

1.11. StopStatement
Thestop statement:

stop;
may be gecuted at ay point in the program and causes immediate terminatioreaziudion. Exe-
cution termination can also result simply fromeeuting the last statement of the main program

block.

1.12. Rass Statement
The passstatement:

pass
has no effect and thus acts as a null statement. It is sometimes useful in connection with condi-
tional statements in the case where no actions are to be performed under some conditions, for

example in:

casei of

Chapter 1 The SETL Programming Language Page 29

(1,3,5):print (i);

(2,4,7):print (i+1);

(0,6,9):pass $ do nothing in these cases
else print('no good");

end case

1.13. Piogram Form
A complete program in SETL has the form:

program name;
(global variable declarations)

(main program block)

(procedure and operator definitions)

end programname; $orend; or end program;

1.13.1. Declarations

The global declarations, which are used if there are variables which are to be accessed
directly by more than one procedure, or by the main program and some other procegute ha
form:

var name,name,...;
constnamesvalue, namevalue, ...;
init name=value, name=svalue, ...;

Thevar statement merely names a list of global variables which are assigned aroiitialue

as usual. Theonst statement defines identifiers to be associated with specified coreiiaes.v

Such constant identifiers cannot appear on the left side of assignments. The right hand sides in
const declarations may be denotations, previously declared constant names, or sets or tuples of
constant values. Thait statement has is similar in form to tbenststatement, but declarean+

ables which are initialized to thevgh constant value, but may be subsequently modified.

All variables and constants declared in the global declarations section may be accessed by
ary part of the program, including gprocedures or operator definitions.

Any identifiers which are referenced in the main program block, but which are not included
in the global declarations are yate to the main program block and may not be accessed by proce-
dure and operator definitions.

1.13.2. MainProgram Block

The main program block consists of a series of statements followed, bgfamements ref-
erenced in this series of statements. A refinement is a block of statements which is labeled with an
identifier Within the main sequence of statements, a refinement can be referenced by using its
label as a statement. Refinements can theesedference other refinements, but the definitions of
refinements do not nest, thare written in a linear sequence, one after anofftee following is
an example of a main program block which uses refinements. Note that the definitions of the

Chapter 1 The SETL Programming Language Page 30

refinements themseadg are similar in form to normal label definitions, except that the name is fol-
lowed by two colons.

Chapter 1 The SETL Programming Language Page 31

program quadratic;

input_data;
solve_equation;
output_ results;

input_data::
read(a,b,c);
print (a,b,c);
check_ eof;

solve_gguation::
X :=(-b + sqgrt(b:b-4:a:c)) / (2*a);

output_results::
print (" root is ’, X);

check_ eof::
if eor then print('improper data’);stop; end if;

end program quadratic;

Refinements arexecuted by inserting the series of statements of the refinement in place of the ref-
erence to the refinementinlike procedures, there is noaw of passing parameters, and the state-
ments of the refinement ¥ full access to all identifiers of the main program, including its labels.

A given refinement may be referenced only once. If a section of code is to be used more than once,
it should be made a procedure rather than a refinement.

1.13.3. Pocedure Definitions
The form of a procedure definition is:

proc prname(argl, arg2, arg3);
(local declarations)
block
(refinements)

end proctokens; $or end progc or end;

This defines a procedure whose name is prname, which must be an identifier not used for
ary other purpose in the program. The list of parametegd,aarg2 are identifiers which are
assigned the argument values when the procedure is called. These names are strictly local to the
procedure, and must be féifent from the names of wglobally declared identifiers. Within the
procedure, these names act as ordinary identifiers. It is permissible to reassigiues to these
identifiers in the body of the procedure, but such assignments do not affect the parameters in the
call since the call is a call byalue. Ifthere are no arguments, then the parentheses surrounding
the argument list may be omitted, or a null list may be retained.

Chapter 1 The SETL Programming Language Page 32

The declaration section, if it is present, contaiais const andinit statements in the same
format as that used in the global declaration sectiory. #ames declared in this manner are
strictly local to the procedure, and must be different fropnrames declared as global. Identifiers
used in the body of the procedure which are not declared either locally or globally are taken to be
local, as though tlyehad been declared locally usingvar statement. The initialization ofavi-
ables toom (if declared byvar, or implicitly declared) or to the specified values in ithie state-
ments occurs on each entry to the procedure.

Within the body of the procedure, tteturn statement is used to return control to the caller
and provide a returned value. The format is:

return expression;
return; $meangeturn om

If no return statement isxecuted, the procedure returns aftgeaiting the final statement in the
block, the returned result beiom.

Procedures may be called either as a statement (in which case the returned value is ignored),
or as a function in an expression, in which case the returned value is the value of the function call:

prname(10,120,30); Gall as a statement
a=b+pname(1,2,3); $all as a function

Multiple values can camniently be returned from a procedure by using tuple formers and tuple
assignment;

[X,y,z] := prname(2,3);
proc prname(argl,arg2);
return [10,20,a+b];

end proc,

Procedures in SETL may be called readlyi (i.e. they may call themselves directly or indi-
rectly). All identifiers which are local to the procedure anedaecursvely to avoid confusion
between values at different recursiovels:

proc factorial(arg);
if arg=1then
return 1;
else
return arg * factorial(arg-1);
end if;
end procfactorial;

Procedures may use refinements in the same manner as described for the main program block.
These refinements are yate to the procedure, and their definitions occur prior tcetite proc;
which terminates the procedure definitiothere is no nesting of procedure definitions, all

Chapter 1 The SETL Programming Language Page 33

procedures can be called from anywhere in the program.

Procedures declared in the manneegisbove dlow only call by value. The folling extended
form of procedure definition allows one or more arguments to be specified as value receiving:

proc name (type arg, type arg, type arg, ...);
where type is one of the following:
rd

The agument is read onlyThis is the default value obtained if type is omitted, and causes the
argument to be passed by value in the manner already descvilithdn the body of the procedure
the parameter name is treated as a variable, but modifications taubeo¥ such variables do not
affect the arguments in the call.

'w

The argument is read/write. Thalue of the argument will be passed as the initial value of the
parameter The parameter identifier is treated asadgable in the body of the procedure, and may
be reassigned awevalue. On return from the procedure, whetdinal value is in thisariable at

the point when theeturn statement is»ecuted is transmitted back as thevnalue of the calling
argument (which must kia the proper syntax for an assignment left hand side).

Wr

The argument is write onlOn entry to the function, the initial value of the corresponding param-
eter is set tmm. The parameter is treated as a variable and assigned to the calling argument on
return in the same manner as described for a read/write parameter.

There is also a form which allows a variable number géiments to be passed to a proce-
dure:

proc name (type argl, type arg2, .. type argn (*));

Such a procedure may be called witly anmber of arguments greater than n-1. Tkiteaeagu-

ments are gathered into a tuple which is assigned aslile of the argn parametefhus the ref-
erence an(2) in the body of the procedure refers to the n+1'th argument in the call. The special
symbolnargs gives the total number of arguments present in the call. Only the last parameter may
be followed by (*) to indicate that it is variable in lengthA.variable length parameter may as
usual be specified to bbd, rw or wr (with rd being the defult). Inthewr case, the initial alue

of argn is the null tuple value.

1.13.4. OperatorDefinitions

A special form of procedure definition is used to introduce a program defined opkfigtor
identical to an ordinary procedure except for the initial definition line which replacpsothine:

Chapter 1 The SETL Programming Language Page 34

op .name(a); $o define a unary operator
op .name(a,b); $o define a binary operator

The effect of such a definition is similar to that of the corresponding procedure declasatémt, e
the call uses ordinary operator (expression) format. The operator name is preceded by a period,
both in the definition (as shown atl@pand when the operator is used in an expression.

The precedence of all binary operators defined in this manneves tban that of the stan-
dard system operators except for the assigning operators. Operators defined in this maymer al
have read only arguments (as thoughwere specified). In the case of a defined binary operator
the corresponding assignment operator and compound operator forms are automatically made
awailable.

CHAPTER 2

PROGRAMMING EXAMPLES

At this stage we hee en enough of the SETL language tovglsome complete programs.
All programming languages ¥ an associated style of programming. The purpose of this chapter
is to give an idea of typical SETL programming style.

In each case, the statement of the problemvindirst (in quotations). &llowing this, the
program is deeloped in a "stream of conciousnesashion, explaining the steps in obtain-
ing the solution, and ging fragments of the program asyteee created. Finallythe entire
program is gien.

2.1. ACurriculum Planning Problem

"In planning the sequence of presentation of topics in a course, onevebjedti present
topics in an order which ensures that all necessary prerequisites for understanding onedopic ha
been cwered before it is presented.” (The same problem arises in writing a book -- hopefully this
book is an example of a solution to this problem!)

"The purpose of the program is to compute a possible sequence of tepicdaga on pre-
requisites. The input data will be pairs of topics, each of which is identified by a string Rame.
example, one input line might be:

'prime numbers’ , 'greatest common divisor’
which means that "prime numbers" must be presented before "greatest comisat idi consid-
ered. In general it will be necessary to trace back chains of requirements. If there is also an input
line:

'division’ , ‘prime numbers’

then of course it will be necessary to presevisitin before discussing the greatest commen di
sor problem.

"For a gven st of data, more than one order may be possibte.example, suppose the
input data is as follows:

Chapter 2 The SETL Programming Language Page 35

Chapter 2 The SETL Programming Language Page 36

|a1 , 1b1
'b, , ,C,
d

, C

then three possible orderings exist:

Vb, d, e
d, e, e
') ,a" 1 ' ') 'C,

Qo @®

For this problem, the program is only required to print out one (arbitrarily chosen) possibility
where more than one exists.

"Another possible situation is that no acceptable ordering exists as in the folloamgle:

1a1 ,)by
1b1 ,)C)
101 , 1a1

where it is obviously impossible to satisfy the required condition. If this situation is encountered,
the program is expected to print an error message."

In approaching a problem of this comytg, the first decision to be made is the form in
which data is to be represented inside the program. If this decision is made ingdheattyou-
ble will be encountered in constructing the algorithm. EKangple, the decision to store the pairs
of prerequisite information in ple would be an error in this case, as will become clear later on.
The general rule in SETL is to use maps wharpossible. This may taksome practice, espe-
cially if you are used to programming in some other language, but remember this simple principle:
find the maps, theare alvays there!

In the problem at hand, we can naturally represent the pairs of data as a map. This map will
be multi-valued, since a\gn topic may be a prerequisite for more than one other topic. The fol-
lowing example (for a course on wine-making) will be used throughout the remaining discussion:

'grapevines’ , 'harvest’
'hiring’ , "harvest’
'harvest’ , 'fermentation’
'yeast' , 'fermentation’
'alcohol’ , 'yeast’
‘bottles’, 'bottling’
'hiring’ , "bottling’
'fermentation’ , 'bottling’
‘bottling’ , 'marketing’
'hiring’ , 'marketing’

In addition to the basic map which contains the prerequisite data, it will be usefilbtarb aux-
iliary set which contains the list of topics. The following initial code for the program will read in
the data and build these structures:

Chapter 2 The SETL Programming Language Page 37

program course;
follows = topics ={};
loop do
read(a,b);
if eof then quit; end;
follows with :=[a,b];
topicswith:= a;
topicswith:=b;
end;

Note that since topics is a set, it cannot contain duplicate elements, so each topic occurs only once
in topics, @en if it occurs more than once in the input data.

As the initial step we can outputyatopic which has no prerequisites. In terms of our data
structure we are looking for an element in topics which has the property that there is no other ele-
ment in topics which is its prerequisite. In SETL this can be expressed by:

if existsnextin topics
| not existsain topics
| [a,next]in follows

After evaluating this test, next will be a possible choice for the first topic to be output. If there is
more than one topic which meets the requirement, then one of them is arbitrarily chosen. In the
example being considered, a possible selection for neutdabe 'bottles’, which has no prerequi-
sites.

We an build an algorithm using this approach by sucedgsiemoving elements from top-
ics. The abee test can then be used to extract topics in sequence which meet the requirement that
they do mot have prerequisites among those topics not yet chosen. The test will fiadliytfen
there are no topics which meet the requirement. If this happens because topics is null (i.e. all top-
ics hare keen output), then all is well, otherwise there is a "cycle" in the data which means that it
is impossible to find an acceptable ordéris approach results in the following completion of the
program:

loop while existsnextin topics
| not existsain topics
| [a,next]in follows
do
topicsless= next;
print(next);
end loop;

if topics £{}
then

print(No ordering is possible’);
end if;

end program course;

Chapter 2 The SETL Programming Language Page 38

The second time through the loop, assuming 'bottles picked on the first loop, 'bottling’ might
be picled. Althoughthe pair ['bottles’,’bottling’] is in follows, it does not prent the choice,
since 'bottles’ was remd from topics in the first loop.

This program is complete but inefficient, in that each time one element isacinam top-
ics, the entire search process is repeated. Except for skipping the one elementastjicst wut-
put, the calculations wolved in this search are unchanged. This means that we are repeating w
unnecessarily.

This is a typical situation which arises in the construction fafiemt algorithms. What we
need is some ay of "remembering" the results of the previous computation (in this case the
search). After an element is remed, we just need to modify the remembered result to reflect the
change which has occurred.

In this particular example, theek is to kuild an auxiliary map which sks the number of
prerequisites of each topic, counting only topics whickehat yet been output. At each stage,
looking for a topic with no prerequisites means finding a topic whose number of prerequisites is
zero, as determined by reference to the auxiliary map. When this elementisdethe auxiliary
map is adjusted to reflect the change, which can be done without recalculating the entire map. T
implement this idea, we must first build the auxiliary map:

numpre ={[a,0] : ain topics};
(for [a,b] in follows) numpre(b) 4= 1; end;

For the example at hand, the numpre map would contain:

{ [’graperines’ ,0],
[harvest’ 2],
['hiring’ , 0],
[fermentation’ 2],
['yeast’ . 1],
['alcohol’ , 0],
['bottles’ , 0],
['bottling’ , 3],
['marketing’ 2]}

Now the main loop of the algorithm appears as follows:

loop while existsnextin topics
| numpre(next= 0

do

topicsless= next;

print(next);

(for ain follows{next})
numpre(a) = 1;
end;
end loog

Chapter 2 The SETL Programming Language Page 39

The test for cycles is unchanged. For the current example, a possible choice for next in the first
loop is 'hiring’, since numpre(’hiring’) is zero. In the adjustment loop following this choice, fol-
lows{’hiring’} is the set of topics which had 'hiring’ as a prerequisite, i.e. the set:

{’harvest’, 'bottling’ , 'marketing’}

Since 'hiring’ is to be remad from topics, the number of predecessors of each of these elements
should be reduced by one togi

numpre(harvest's 1
numpre(’bottling’)=2
numpre('marketing’F 1

The remainder of the numpre map is unchanged. On the next loop, we might getingsipe
since numpre('grapevines’) is zero. \Wdollows{'grapevines’} is the singleton set {’habst’} so
we male ane change to the numpre map:

numpre(harvest’x 0

making 'harvest’ an eligible possibility for selection on the third loop.

This is a more efficient procedure than our previous attemptetén we dill have a surce
of inefficiengy, Snce numpre is searched at each step to find zero entries. Applying the same prin-
ciple of avoiding doing the same thing twice, we can make final impreement in the program.
To avoid the search of numpre, we maintain an auxiliary set, called nopre, which is the set of top-
ics whose numpre value is zero. At each stage we need merely pick an element from nopre. As the
numpre map is adjusted when the element is vethave check for anentries whose numpre
value becomes zero, and add them to nopre. NMagl® all searching. The first step in fallmg
this approach is to initialize the nopre set right after the initialization of numpre:

nopre = {a in topics | numpre(ag 0};
For the example we are using, nopre wouldehthe initial value:
{’alcohol’, ’hiring’, 'grapevines’, 'bottles’}

Remember that the order of elements in a set is not defined, so that when an elemeadl is pick
from nopre, there is a four way uncertainis aspect of the SETL program models thet that

there is more than one acceptable solution to the problem. The main loop of the program no
becomes:

loop while nopre £{} do
nextfrom nopre;
topicsless= next;
print (next);
(for ain follows{next})
numpre(a) <= 1;

Chapter 2 The SETL Programming Language Page 40

if numpre(a¥0 then noprewith:= a; end;
end;
end loop

If "hiring’ is picked in the first loop, then numpre is adjusted as describedeadmal nopre
becomes:

{"alcohol’ , 'grapevines’ , 'bottles’}

In the second loop, suppose that 'grapevines’ is selected. As numpre$tiaiv decremented, it
becomes zero, so 'harvest’ is added to nopre, giving thenopre value:

{’harvest’ , 'alcohol’ , 'bottles’}

We row gve the complete program with comments added. This fieeion contains te addi-
tional refinements. The input data is printed out, which is a good general procedureatardilo
malkes the program easier to use. The second change is a change in theyeksoviich aoids
the need to rem@ dements from topics in the loop.

program course;

$ follows is map showing prerequisites
$ topics is set of all topics

follows = topics ={};
$ loop to read in data, building follows, topics

loop do
read(a,b);
if eof then quit; end;
follows with :=[a,b];
topicswith:= a;
topicswith:=b;
print (a; ' ,b);

end loop

$ build auxiliary information structures
$ numpre(x)= count of remaining prerequisites of x
$ nopre is set of topics with numpre&)0

print ();

numpre ={[a,0] : ain topics};

(for [a,b] in follows) numpre(b)+=1; end;
nopre ={a in topics | numpre(aD};

Chapter 2 The SETL Programming Language Page 41

$ loop to print elements in appropriate order
$ adjusting numpre and nopre for element picked

loop while nopre £{} do
nextfrom nopre;
print (next);
(for ain follows{next})
numpre(a) = 1;
if numpre(a¥0 then noprewith:= a; end;
end for;
end loop

$ test for cycles, indicated by a remaining
$ topic with numpre non-zero

if existsain topics | numpre(a) > then
print ‘'No ordering is possible’);
end;

end program course;

This problem is actually a specifixanple of a general problem known as "topological
sorting", in which a linear order must be generated from a partial. dxgertial order is essen-
tially a directed graph. In fact a multélued map, such as wevieased in this program, is often a
convenient representation for a directed graptor the data used in the example, the map "fol-
lows" may be thought of as representing the following graph:

Chapter 2

The SETL Programming Language

Page 42

hiring

grapevines

harvest

alcohol

yeast

bottles

fermentation

#

bottling

#

marketing

CHAPTER 3

CHARACTER SET & D ATAT YPES

This chapter describes the most elemental aspects of the SETL languagehahacters
can grouped together to form those symbols which are the main consituent components of a SETL
program.

3.1. CharacterSet

SETL programs are written using characters from the standard SETL character set which
contains the following characters:

A-Z uppercase letters
0-9 numeridigits

< less than
greater than

left parenthesis
right parenthesis
guote

period

, comma

colon

semicolon

slash

plus

minus

dollar sign
interrogation
number sign
underline

| eft set bracket
right set bracket

N——~ VvV

| H0H | + ~=

— Ay

Chapter 3 The SETL Programming Language Page 43

Chapter 3 The SETL Programming Language Page 44

[| eft tuple bracket
] right tuple bracket
| auch that character

When using SETL on a particular machine, it may be the case that certain of these characters are
not available. For the last fie characters in the list, standard substitutes waable (since these
are the characters which are most likely to be missing):

Chapter 3 The SETL Programming Language Page 45

can be written as <<
can be written as >>
can be written as (/
can be written as /)
can be written as ST

The remaining characters arevays available (at worst the graphic used wikany from the one

printed in the abee list). Thismeans that the process of translating a SETL program written in
the standard character set into the required character set for actually running the program is at
most a one to one substitution.

Certain implementations may augment this character set. In parti€thes cases of letters
are aailable, then lower case letters are permitted. SETL treats upper and lower case letters as
indistinguishable (except in string constants as further described below).

In addition to this standard character set, there is also defined a publication character set
which is fully described in appendix nn. The publication set contains various "mathematical”" sym-
bols and is chosen withoutgad to availability of characters on actual computers.vii¢heless,
on mary computers it will be possible to implement some of these characters, or at least to supply
acceptable substitutes for them. A particular implementation will describe whicly ibfahe
characters in the publication set it implemerAsprogram may use such characters as are defined
to be implemented, but if the program isvethto another implementation which does not imple-
ment the same subset of publication characters, then a translation problem may be encountered.
Therefore the general rule is to use only the standard character set if thereoassibility that
the program will be meed to another implementation.

The abee dscussion of character sets applies in all contexte for input data and string
constants appearing in the program. In both these cases, the full charactatadde @n the par
ticular computer in use are used. Since such character sets vary widely from one machine to
anothey SETL makes no attempt to define the set\@lable characters for these uses. Note also
that upper and lower case letters are distinct in these contexts. Programs which are intended to be
moved from one implementation to another can minimizevemion difficulties by restricting
data and string constants to the standard character set.

3.2. SyntacticalTokens
A program is a stream of syntactical tokens which are in one of the following categories:

Identifier
A string of letters, digits and a special character called the break character (in this book, and
in most implementations, the break character is an underlxe)dentifier must start with
a letter and contain no blanks. It can bg BEngth, but must not be split across a line bound-
ary. Upper and lower case letters can be used interchangably and asteadui

Chapter 3 The SETL Programming Language Page 46

Examples: thisisalongidentifier
this_is_a_longer identifier
i
j107x

None of these identifier names can be the sameyaesared keyword or operator name.
Appendix nn contains a complete list of such reserved names.

Kewword
A keyword is a string of letters which is used for a special purpose such as introducing a
control structure. All kyword names are resexd words and may not be used as identifiers.
Appendix nn contains a complete list of standaguords in SETL.

Punctuation
Certain special characters and sequences of special characters appear as separators:

semicolon

left parenthesis

right parenthesis

| eft tuple bracket

right tuple bracket
alternatdeft tuple bracket
alternateright tuple bracket
| eft set bracket

right set bracket

<< alternatdeft set bracket
>> alternateight set bracket
: colon

| auch that

, comma

integer range

alternatdor integer range

A o~ e — N o~ - -
~

Operators
Certain special characters and sequences of special characters are used for names of stan-
dard operators:

assignment, assigning operator suffix
addition, set union, concatenation
subtraction, set difference
multiplication, set intersection

/ division, compound operator suffix

** exponentiation

|+'||'

*

Chapter 3 The SETL Programming Language Page 47

< less than
> greater than
<= less than or equals
>= greater than or equals
= equals
= not equals
cardinality
? interrogation

Other standard operatorsviearames which are similar in form to identifier names. All such names
are reserved and cannot be used as identifier names in a program. Appendix nn contains a com-
plete list of such reserved names.

User Defined Operators
User defined operators yearmames which start with a period. The names themselves may
match other identifier names, or reserved words, although such multiple usage is usually not
desirable. A gien operator name may be used for only one operator.

Denotations
Constant values of basic datatypes are represented by tokens called denotations (e.g. 123 is a
token representing an irgger value). A subsequent sectionegi the rules for constructing
denotation tokens.

Comments
Normally the SETL compiler processes all columns of each input lingekdg the charac-
ter $ (dollar) is treated as an end of line signal aryde following the $ is ignored (apart
from being listed in the program listing generated by the compiler). This means that arbi-
trary comment text may be written onydime following a $ sign. In particulalines which
have a $ h column one are entirely ignored and thus function as comment lines. The SETL
compiler alvays ignores blank lines, so thenay be used freely to space the program and
comment text.

3.3. Datatypes
The following primitve datatypes appear in SETL:

integer
Integers are signed integer values. Ualikary other programming languages, SETL places
no limit on the magnitude of integers, although enormougeéntemight eentually exceed
the available storage. Of course the programmer should expect that addingheadigit
numbers will be more &€ient than adding terten thousand digit numbers. There is only
one zero in SETL and it is considered to be neither pesitir neydive.

real Real number values correspond to thosslable on the machine in use. Typically this will
mean that implementation dependant limits and acgwvdcapply. SETL has only one pre-
cision of real numbers, and will choose to use "double precision" values on machines whose
word size is small (e.g. 32 bits). There is only one real zahgevin SETL and it is consid-
ered to be neither posié ror negdive.

Chapter 3 The SETL Programming Language Page 48

string
These are arbitrary length strings of characters. As in other languages, SETL is vague about
what set of characters will be permitted in STRIN&Bues. In practice, the allowed set will
correspond to the charactexgitable on the particular machine in use.

boolean
There are tw boolean values, TRUE and FALSE. These values are yielded as the result of
test operators and are often used to control thedfaxecution.

atom These are special uniqualwes which are used in constructing data structuring maps. The
use of atoms is described in the chapter on data structures.

om Omis used to represent an undefined value in the following circumstances:

Undefined variable

Undefined element of a tuple

Value of map at undefined point

Element selected from the null set

Compound operator applied to null set or tuple

Om is not a value from a technical point ofwiand does not hee a ype (thetype operator
applied toom causes an error), vaver it is sometimes covenient to rggard om as being
the "value" of an undefined variable or element.

3.4. Denotations

For each of the basic datatypes, denotatiorettskcan be constructed which represent con-
stant values of particular datatypes.

3.4.1. IntegerDenotations

An integer denotation consists of a sequence of digitsyofeangth and has as its value the
corresponding decimal numbéto banks may appear within the constant and a single constant
must appear entirely on one input line.

There are no rggtive cenotations as such,+fLl23 appears in a program, then it is composed
of two tokens: the- sign is a unary operatand the 123 is an unsigned integer denotation.

Examples:

0

13

0013 $same value as 13
123497697623476124976734671249237612467676712497614

3.4.2. ReaDenotations

A real denotation consist of an optional @ge part consisting of a string of digits, falled
by a period (decimal point), folleed by a non-empty string of digits which is the fractional part,
followed by an optional exponent.

Chapter 3 The SETL Programming Language Page 49

An exponent consists of the letter E (upper or lower case if bothvaitatde), followed by
an optional sign (+ ot), followed by a non-empty string of digits.

Blanks may not be used within the denotation, and a single denotation must be contained
entirely on one line of the program.

Examples:

3.141592653589793
0.0
.0 $but not 0.
.01e+10
.01e-10
1.0E0
1.0E+10 $but not 1.E10 or 1E10

3.4.3. StringDenotations

String denotations consist of a series of zero or more characters enclosed in apostrophe
characters ("single quotes"). If blanks appear in this sequengegréhsignificant, and represent
blank character values.

Any of the charactersvailable on the machine in use may appear istring vaue,
although programs which are intended to be run cariety of different computers should restrict
their use to commonlyvailable characters (e.g. those used within the SETL language itself) to
avad translation problems.

If the string quote mark itself appears withisteng value, then it must be represented as a
sequence of tavauccessie gring quotes with no intervening blank.

If the sequence of characters crosses a line boyrtdarya string quote must signal the end
of the characters on the first line, and another quote signals the start of the characters on the sec-
ond line. This sequence of quote, line break, quote is called a string break and is not included in
the actual string value.
Examples
'Don’'t tread on the grass’

" $ the null character string

3.4.4. BoolearDenotations
The denotations TRUE and FALSE can be used to stand for éhossible booleanalues.

Chapter 3 The SETL Programming Language Page 50

3.4.5. OtherDenotations

The symbolom may be used to represent the undefiradey (it is not strictly a denotation,
sinceom is not strictly a value). The only sensible contexts for the appeareince af the right
hand side of an assignment, and as an operand fooraf test whose purpose is to test for unde-
fined.

There are no denotations fatom values.

CHAPTER 4

EXPRESSIONS & ASSIGNMENT STATEMENTS

An expression in SETL is used to computeatug or test some condition. There are fiv
forms for an expression:

. Basic operand, includes identifiers, denotations, set and tuple formers, subscripted refer
ences to tuples, map references, conditional expressions and parenthesized expressions.

. Special system valuegof, newat, nargs, ok, lg, time, date).

. Unary operatqrwhich is written in front of its operand which is itself an expression and
which causes a computation to be made using the operand value as input.

. Binary operatqgrwhich is written in between its twoperands, which are themselvepees-
sions. Causes a computation to be made using thep®rand values as input.

. Quantified test, one of three fornfexists, notexists, drall) which excute an implied loop
testing a condition and yield a boolean result.

These rules la sme ambiguity in forming an expression, for example in the expression a+b*c,

is the operator + applied to thedwperands a and b*c, or is the operator * applied to the tw
operands a+b and c? These ambiguities are exbbly the precedence rules described later in this
chaptey for example these rules specify that the first alter@atithe one takn in this case. It is

also possible to use parentheses to alter or emphasize the order prescribed by thes® rules. F
example:

1+2*3 $=7 by precedence rules
1+(2*3) $=7
(1+2)*3 $=9

The following sections ge the exact rules for forming basic operands, together with a list of all
the standardly defined operators.

4.1. BasicOperands and Special System Values
This section describes the various possibilities for basic operands in expressions.

Chapter 4 The SETL Programming Language Page 51

Chapter 4 The SETL Programming Language Page 52

Denotations
Denotations stand for theale which thg denote. For example the denotation 123 stands
for the integer value 123.

Identifiers
Identifiers stand for the value contained in the associaaedble, as set by a pieus
assignment statement.

Tuple Enumeration
A tuple \alue constructed by enumeration consists of zero or more arbikprgssions,
separated by commas, with values other thrarand enclosed in tuple brackets [and].

Integer tuple former
An integer tuple former has one of theotferms:

[expressionl, expression2 .. expression3]
[expressionl .. expression3]

The efect is to construct a tuple containing the specified range of integer values. The starting
value is gven by expressionl. If gpression2 is present, then it specifies both the step size and
direction of the sequence which produces the remaining values. The step is the diffqerse e

sion2 minus expressionl. Thialue must be non-zero. If it is posdj then expression3 is the
maximum value which terminates the sequence,géihes, then it is the minimum value terminat-

ing a reverse sequence. If expression2 is omitted, then the default step size is 1 and the sequence is
ascending (i.e. the default for expression2 is expressionl plus 1).

Tuple Former
A tuple former is written:

[expression : iterator]

and computes a tuple value in an implied loop. The syntax and meaning of tuple formers is
further described in the section on loops.

Set Enumeration
A set value constructed by enumeration consists of zero or more arbitrary computational
expressions with value other tham, separated by commas, and enclosed in set brackets {
and }.

Set Former
A set former is written

{expression : iterator}

and computes a sealue in an implied loop. The syntax and meaning of set formers-is fur
ther described in the section on loops.

Integer set former
An integer set former has one ofaywossible forms:

{ expressionl, expression2 .. expression3 }

Chapter 4 The SETL Programming Language Page 53

{ expressionl .. expression3 }

The effect is to construct a set using the sequence gfenstespecified. This sequence of
integers is the same as that implied in angetetuple former as previously described,
except that the resulting set does not retain the order of the elements, since setayare al
unordered.

String Slice
A string slice obtains a substring fronsting value. The syntax is:

string(start..end)

where string is the stringalue, which must be a basic operand, and start and length are arbi-
trary expressions yielding integer results. Start is the starting position (with the first charac-
ter in the string numbered 1), and end is the ending position numbered in the same manner
The resulting string is the substring which includes both the starting and ending characters.
Both the start and end values must be in range (greater than zero and less than or equal to
the length of the string). The one exception to this rule occurs when thelelrediv less

than the start value. In this case the start and end values need not be in range and the result is
always a null string. The following abbreviated forms are permitted:

string(start) $neans string(start..start)
string(start..) $neans string(start..#string)
string(..start) $neans string(1..start)

Tuple Slices
Tuple slices hee the same basic format as string slices:

tuple(start..end)

The value tuple, which must be a basic operand, is the tuple from which a slice is to be
selected. Start and end are arbitrary integpressions which specify the desired subtuple.

Both start and end must be in range (greater than zero and less than or equal to the length of
the tuple). As in the case of string slices, the omjgtion occurs if the end value is less

than the start value, in which case a null tuple is obtained as the rgsudtess of whether

or not the start and end values are in range. Note that a tupleveamaneearny undefined

values at the end, so the resulting tuple is shortened if necessary to meet this requirement as
illustrated by the following examples:

a=[1,3,7,9];
a(8) =13;
b :=a(2..3); $=1[3,7]

b :=a(2..4); $=1[3,7,9]

Chapter 4 The SETL Programming Language Page 54

b =a(2..5); =[3,7,9]
b:=a(11..10); $=]]

The following short hand notations aneitable:

tuple(start..) $neans tuple(start..#start)
tuple(..start) $neans tuple(l..start)

Note that, in contrast to string slicing notation, the form tuple(start) is a selection, not a one
element slice.

Tuple Selection

A tuple selection, or tuple subscripting operation yields a specified single element from a
tuple. The form is:

tuple(index)

where tuple is a basic operand yielding the tuple value to be subscripted, and iate
arbitrary expression with a posi value which selects the desired element. If inde
exceeds the maximum index, or corresponds to an undefined elealeat the result is
undefinedom). An error results if the indevalue is zero or rggtive.

Single Valued Map Reference
A single valued map reference is written:

map(domval)

where map is a basic operand which yields a set value which must contain only mairs (tw
element tuples), and dowvis an arbitrary expression giving the domain value. Ddmv
must not beom, and there must be exactly one pair [x,y] in map such that alsmvThe

result of the map reference is the range value y.

Multi-valued Map Reference
A multi-valued map reference is written:

map{domval}
where map is a basic operand or parenthesixpression which yields a set value which
must contain only pairs (twvdement tuples), and domval is an arbitrary expressioimgi
the domain &lue. Theresult is expressed by the following equation:

map{domval}={y : [x,y] in map | x= domval}

In particular the value is § if t here is no pair in the set with a matching domain value. If
there is only one paithe result is a singleton set containing the one range value.

Chapter 4 The SETL Programming Language Page 55

Multi-argument Map References
It is sometimes camnient to hae a multi-argument map, i.e. a map whose elements are
retrieved using two or nore subscript &lues. Such maps are modeled in SETL by using a
map where the elements of the domain are themselves tuples of values. For example, the
equialent of a 2 by 2 array can be modeled as the map:

{ [[x1],v1]],
[11,2], vi2],
[12,1], v21],
2,2],v22] }

A special notation is\ailable to facilitate references to such a map:

map(a,b.n) means map([a,b...n])
map{a,b.n} means map{[abn]}

This means that the extra tuple brackets can be omitted in such a refenangeg gotation
similar to multi-dimensional array references in other languages.

Function Calls
A function call is a call to a procedure which returns a value, and has the general form:

fname(expression,expression,...expression)

Further details on function calls are contained in the chapter on procedures.

Special Value
Certain special reserved names corresponalites &ailable from the SETL run time sys-
tem. The following is a list of all such names:

newat $yields a unique atom

eof $ tests for end of file

nargs $ number of arguments

lev $ current backtracking iel

ok $ backtracking environment switch

time $ time of day
date $ current date

Newat yields a nev atom value which has the property of beingfetiént from ag previ-
ously obtained atom. The use of atoms in general, andetivat function in particularis further
described in the chapter on data structures.

Eof is used folleving a read or other input function call. It returns a boolean valuBETR
or FALSE) indicating whether the read just performed caused an end of file to be encountered
(TRUE means that an end of file was encounterd@ofis referenced before amnput operation
has been performed, the result is FALSE.

Chapter 4 The SETL Programming Language Page 56

Nargs yields the number of arguments which appear in the call to a procedure. It is used
within the procedure, and is most useful in conjunction with the feature which alloarsabler
number of arguments to a procedurendfgs is used outside grprocedure (in the "main" pro-
gram), the value is zero.

Lev and ok are only used in conjunction with the backtracking feature, which is fully
described in a separate chapter.

Parenthesized Expression
Any expression enclosed in parentheses can be used as a basic operand. This is the rule
which allows the use of parentheses to control the order of operations.

Conditional Expressions
Conditional e@pressions(if expressions andccase expressions) may be used as basic
operands. These constructions are fully explained in the following chapter.

expr Blocks
Theexpr block allows a alue to be computed from a sequence of statements, and used as a
basic operand in greuitable contgt, e.g. as the operand of some other operatw form
is:

expr blockend

The effect is to xecute the sequence of statements in blagk.least one of these state-
ments will be, or contain, deld statement:

yield expression;

As soon as thgield statement is encountereceeution of theexpr block is terminated,
and the value of thexpr block is the value of the expression in theld statement. Ilis possible
to have nmore than ongield yield statement in the sanexpr block, and the last statement is not
required to be gield statement, although it often will be. Keeution of theexpr block completes
without executing ayield statement, then the resultdm. It is possible, though unusual, to nest
expr blocks, i.e. to use aexpr block as an operand within anottexpr block, but in this case, a
yield statement in the inner blockvadys refers to the inner block. The use ofield statement
other that statically inside axpr block is erroneous, in particulat is not valid to eecute the
yield in a function or refinement called within teepr block.

4.2. Operators

Operators yield a value using as input one (unary) or(lbmary) operandsThe following
is a complete list of predefined operators in the SETL system. The effect of each operator is
defined informally in this section. A more formal set of definitions appears in appendix nn where
each operator is defined precisely using a SETL operator definition. This appendix may be con-
sulted to determine the exact effect of the operator in special cases.

4.2.1. UnaryOperators

Unary operators compute alue from a single input operand which is written to the right of
the operator token. In the folling list, the allevable operand datatype is indicated. If an operator
is used with a datatype which is not in the list, then an error results.

Chapter 4

+ integer
+ real

- integer
-real

et

dring
tuple

absinteger

absreal

absstring

acosreal
arb set

asinreal
atanreal

ceilreal

char integer

cosreal
domain set

even integer

The SETL Programming Language Page 57

Theresult is the integer operand, unchanged in value.
Theresult is the real operand, unchanged in value.

Theresult is the ngative d the integer operand0 is equal to 0.
Theresult is the ngative d the real operand:0.0 is equal to 0.0.
Numberof elements in the set as an integer.

Numberof characters in the string as an integer.

Index of highest defined element in the tuple, zero if applied to the null
tuple. This is equal to the number of defined elements in the tuple in
the case where there are no "holes".

Yields the absolute value of the integer operand. Returnsathe v
unchanged if it is zero or posi#, and nedes it if it is ngative, 0
that the result is alays non-ngative.

Yields the absolute value of the real operand. Returns dhee v
unchanged if it is zero or posii and nedes it if it is ngdive, so

that the result is ®lays non-ngative.

Theoperand slue must be a one character string or an error results.

The returned result is the internal integer code for the charalitr
thatabsandchar are irverse operators.

Yields the arccosine of the real operand whichvsrgin radians. An
error results if the operand is out of range.

Theresult is an arbitrary element from the set. If the set is the null set,
then the result ism.

Yields the arcsine of the real operand which igmiin radians. An
error results if the operand is out of range.

Yields the arctangent of the real operand whichviengn radians.

Ceil yields the smallest integer x such that=xreal. For &leceil
3.5 andceil 4.0 both yield 4.0 andeil —3.5 andceil —3.0 both yield
-3.0.

Yields a string consisting of the character whose internal code is equal
to the value of the integer operand. The range of permissible input
operands and their interpretation is implementation dependent. An
error results if the operand is out of range.

Yields the cosine of the real operand which v@gin radians.

Theset operand must be a map, i.e. it must consist entirely of pairs.
The reference yields the domain set as defined by the equation:

domain set={a : [a,b]in set}

Yields TRUE if the integer operand is exactlyisible by two, and
FALSE if it is not divisible by two.

Chapter 4

expr real

fix real

float integer

is_atomary
is_booleanary
is_integerary
is_mapary

is_realary
is_setary
is_tuple ary
floor real
log real

not boolean

odd integer

pow set

random integer

random real

random set

The SETL Programming Language Page 58

Yields the exponential of the real operand (i.e. the value e**operand
where e is the base of natural logarithms). An error results if the com-
putation causes realeflow.

Returnghe integer part of the real operand as argateropping the
fractional part. The caersion is alvays possible, although precision
may be lost in the least significant digits for numbers of large magni-
tude.

Conwerts the integer operand to its corresponding rakle: If the con-
version causes\arflow (which is possible in the case oéry lage
integer operands), then an error results.

Yields TRUE if the operand is of type atom, and FALSE otherwise.
Yields TRUE if the operand is of type boolean, aAdl $E otherwise.
Yields TRUE if the operand is of type integard FALSE otherwise.

Yields TRUE if the operand is a map (i.e. it is of type set and contains
only pairs as element values), and FALSE otherwise.

Yields TRUE if the operand is of type real, and false otherwise.
Yields TRUE if the operand is of type set, and FALSE otherwise.
Yields TRUE if the operand is of type tuple, and FALSE otherwise.

Floor returns the largest integer x, such that=xreal. For example,
floor 3.5 andfloor of 3.0 are both 3.0 arftbor —3.5 andfloor —4.0 are
both-4.0.

Yields the natural logarithm of the real operand. An error results if the
operand value is zero orgetive.

Yelds TRUE if the operand value is FALSE a&LSE if the operand
vaue is TRUE.

Yields FALSE if the integer operand is exactly divisible by two, and
TRUE if it is not divisible.

Returnsa ®t whose elements are all the subsets of the set operand,
including the null set. The number of elements will be 2**n where n is
the cardinality of the operanghow applied to the null set yields a one
element set containing the null set as its value.

Returnsan integer which is pseudo-randomly disftdd wer the
range from zero to thegn operand value, including both end points.
For example random 6 will give me of the seen integers
0,1,2,3,4,5,6.

Returnsa real which is pseudo-randomly distributedeothe range
from zero to the gen operand value, including zero but not including
the operand value.

Returnsan element from the set where the choice igeged by a
pseudo-random distribution which ensures that the probability of

Chapter 4

random tuple

range set

signinteger
signreal

sinreal
sqrt real

str integer

str real

str string

str atom

str boolean

strom
str set

The SETL Programming Language Page 59

picking ary particular element is the same as that foy ather ele-
ment. Contrast this witlarb which picks an arbitrary elementutb
makes no similar guarantee on the distribution (and might in fact pick
the same element each time).

Returnsan element from the tuple where the choice isegmed by a
pseudo-random distrittion which ensures that the probability ofyan
element of the tuple (including wriholes") being picked is the same
as the probability of picking grother element.

Theset operand must be a map, i.e. it must consist entirely of pairs.
The reference yields the range set as defined by the equation:

rangeset={b : (a,b)in set}

Yields one of the integer resuitg, 0 or +1 depending on whether the
integer operand is getive, zero or positie.

Yields one of the integer resukd,0 or +1 depending on whether the
real operand is mgtive, zero or positie.

Yields the sine of the real operand, which iggiin radians.

Returnghe square root of the real operand. An error results if the
operand value is getive.

Thisreference yields the decimal string corresponding to the value of
the integyer, preceded by a minus sign if thalue is ngative (but posi-
tive values are not preceded by a plus sign).

Yields the decimal string corresponding to the value of thgeénte
using a format consistent with range and precision of the implementa-
tion. Negdive values are preceded by a minus sign, but pesttlues

are not preceded by a plus sign.

If the string operand has the form of an identifier (itestarts with a
letter and contains only letters, digits and the underline character), then
str returns its operand unchanged, othengiseyields the string alue
surrounded by quotes, and withyaimternal quotes doubled, i.e. it
yields the string denotation corresponding to the string value.

Yelds a string consisting of a number sign (#) feld by an intger
value which uniquely identifies the atom value.

Yelds one of the tov grings '#T’ or '#F' depending on whether the
operand is true or false respegely.

Yields the string .

Yelds the string consisting of a left set bracket {, fokadl by a blank,
followed by the results of applyirgjr to each element in the set, the
values being separated by the sequence blank, comma, btaldw-F

ing the last glue is a final blank and a right set bracket }. The null set
as an operand results in the stringy'’{ If the set brackets are

Chapter 4 The SETL Programming Language Page 60

unavailable, then << and >> are used as replacements.

str tuple Similarresult tostr set except that the elements are in order by tuple
index, and the brackets are either gr simple parentheses if these
characters are uwmdglable, unless the tuple has one element, in which
case tuple brackets [and] are used.

tan real Yields the tangent of the real operand whichvergin radians.

tanh real Yields the hyperbolic tangent of the real operaAd. error results if
the calculation causes realedflow.

type atom Yelds the stringatom’.

type boolean Yelds the stringboolean’.

type inteyer Yields the stringihteger’.

type set Yields the stringset’.

type real Yields the stringreal’

type string Yields the stringstring’.

type tuple Yields the stringtuple’.

4.2.2. BinaryOperators

Binary operators compute a result value frono timput operands. The operator ¢ok
appears between thedawperands which are referred to as the left and right operands of the opera-
tor. In the following list, the allvable combinations of operand datatypes are indicatedn
operator is used with a combination of datatypes not in the list, then an error results.

integer + intger Yields the sum of the twinteger operand values. ©xflow is not pos-
sible, since integers can be of arbitrary magnitude.

real + real Yields the real sum of the dnwoperands. Arerror results if the addi-
tion causes realverflow.

set + set Yields the set which is the union of theotset operands.

string + string Yields the string which is the concatenation of the ¢gperand strings.

tuple + tuple Concatenates itsauple operands.

integer - intger Yields the difference of the twinteger operands. @vflow is not pos-
sible.

real - real Yields the real diérence of the ter operands. Arerror results if the
subtraction causes reateflow.

set - set Yields the diference between the twset operands, i.e. the set of all

elements which are contained in the first operantinbt contained in
the second operand.

integer * intger Yields the product of the minteger operands as an igax Overflow
is not possible.

Chapter 4

real * real

set * set
string * integer

integer * string

tuple * integer

integer * tuple

integer / intger

real / real

integer ** integer

real ** integer

real ** real

any#?#an

any= ary

ary /=ary

integer < intger

real < real

The SETL Programming Language Page 61

Yields the read product of the dvwoperands. An error results if the
multiplication causes reaverflow.

Yields the set which is the intersection of the tat operands.

Yields a string consisting of integer number of duplications of string.
For example, 'ab™*3 is the string 'ababab’. If the integer operand is
zero, then the result is the null string. An error results if theyémte
operand is ngetive.

Means the same as string * integer (i.e. the ¢perands can appear in
either order).

Yields a tuple consisting of integer number of duplications of tuple.
For example, 3*[1,2] is the tuple [1,2,1,2,1,2]. If the igé& operand is
zero, then the result is the null tuple. An error results if the operand is
negdive.

Means the same as tuple * integer (i.e. the operand can appear in
either order).

Yields the quotient of the twinteger operands as a real. An error
results if the divisor is zero, or if theviSion causes realerflow, or if
either operand is outside the range alfires which can be ceerted to
real.

Yields the real quotient of the t&voperands as a real. An error results
if the divisor is zero, or if the division causes readrtiow.

Yields the intger result of exponentiating the left operand by the right.
Overflow is not possible. An error results if the right operand ig-ne
ative, or if both operands are zero.

Yields the real result of exponentiating the left operand by the right
operand. Arerror results if the exponentiation causes rgatflow, or
if the right operand is metive, or if both operands are zero.

Yields the real result ofkxponentiating the left operand is complex, or
in the case of zero to thewer of zero, or if the result causes real
overflow.

Yields the left operand if it is defined, or the right operand if the left
operand is undefing@dm).

Yields TRUE if both operands ¥&the same type and value, or if both
operands are undefinéaim) and FALSE otherwise.

Yields FALSE if both operands Yvma the same type and value, or if
both operands are undefing@un) and TRUE otherwise.

Yields TRJE if the left operand is less than the right operand and
FALSE otherwise.

Yields TRJE if the left operand is less than the right operand and
FALSE otherwise.

Chapter 4

string < string

integer < integer

real <= real

string <= string

integer > intger

real > real

string > string

integer = integer

real >= real

string >= string

booleamand boolean

realatan2real

integerdiv integer

The SETL Programming Language Page 62

Yields TRUE if the left operand is lexically less than the right operand.
The lexical ordering of characters is implementation dependant.
Strings are compared left to right. A string is considered to be less than
a longer string which matches its initial characters (e.g. 'abc’ is less
than "abcf’).

Yields TRUE if the left operand is less than the right operand, or if the
operands are equal, and FALSE otherwise.

Yields TRJE if the left operand is less than the right operand, or if the
operands are equal, and FALSE otherwise.

Yields TRUE if the left operand is lexically less than the right operand,
or if both operands are equal, and FALSE otherwise.

Yields TRUE if the left operand is greater than the right operand, and
FALSE otherwise.

Yields TRUE if the left operand is greater than the right operand, and
FALSE otherwise.

Yields true if the left operand isxieally greater than the right
operand, and FALSE otherwise.

Yields TRUE if the left operand is greater than the right operand, or if
the operands are equal, and FALSE otherwise.

Yields TRUE if the left operand is greater than the right operand, or if
the operands are equal, and FALSE otherwise.

Yields TRUE if the left operand is lexically greater than the right
operand, or if the operands are equal, and FALSE otherwise.

Yelds TRUE if both operands ¥&ate value TRUE and FALSE other
wise. The right operand is nowaated (and therefore notvemn
required to be of type boolean) in theemt that the left operand is
FALSE.

Yields the arc tangent of the quotient of the operands, taking into
account their signs. The result is yielded in radians.

Yields the integer part of the quotient of th@tgperands as an irger.
Overflow is not possible. An error results if the divisor is zefhe
treatment of ngative goerands, which is not consistent with that of the
mod operator is shown by the following table of examples:

+7div+3 =42
-7div+3 =-2
+7div-3 =-2
-7div-3 =42

Chapter 4

booleanmpl boolean

stringin string

anyin set

anyin tuple

setincs set

setlessary

setlessfary

integermax integer
realmax real
integermin integer
realmin real
integermod integer

stringnotin string

anynotin set

anynotin tuple

The SETL Programming Language Page 63

Yelds FALSE if the first operand is TRUE and the second operand is
FALSE, and TRUE otherwise.

Yields TRUE if the left operand appears as a substring of the right
operand, and ALSE otherwise. For the case of a single character left
operand, the &ct is to test whether the character appears in the string.

Yelds TRUE if the left operand appears as an element in the right
operand, and ALSE otherwise. An error results if the left operand is
undefinediom).

Yields TRJE if the left operand appears as an element in the right
operand, andALSE otherwise. An error results if the left operand is
undefinediom).

Yelds true if the left operand includes the right operand, i.eveifye
element in the right operand appears as an element in the left operand,
and FALSE otherwise.

If the right operand value appears as an element of the left operand set
value, then the result is the set with this one element vetnmther

wise the result is the unchanged left operaasides Anerror results if

the right operand is undefinéaim).

The left operand must be a map, i.e. a set containing only pairs. The
result yielded is the set of all pairs in this map operadevwhose

first element does not match the right operaatue: If the right
operand does not appear in the domain of the left operand value, then
the left operand value is yielded unchanged. An error results if the
right operand is undefinddm).

Yields the larger of the winteger operands.
Yields the larger of the twreal operands.
Yields the smaller of the winteger operands.
Yields the smaller of the tweal operands.

Yields the integer remainder or modulus from dividing the first
operand by the second. An error results if thesdr is zero or ng
ative. The result is avays positive, so hat, for ¢éample,—7 mod 5 has

the value +3.

Yields FALSE if the left operand appears as a substring of the right
operand, and TRUE otherwise. For the case of a single character left
operand, the éct is to test whether the character is not included in the
string.

Yelds FALSE if the left operand is contained as an element in the right
operand, and TRUE otherwise. An error results if the left operand is
undefinediom).

Yields FALSE if the left operand is contained as an element in the right
operand, and TRUE otherwise. An error results if the left operand is

Chapter 4 The SETL Programming Language Page 64

undefinedom).

integernpow set Yelds the set containing all subsets of the right set operand whese car
dinality (number of elements) matches the integer valuengas he
left operand. An error results if the left operand igatige.

setnpow integer Meanghe same as inger npow set (i.e. the operands may appear in
either order).

setsubsetset Yelds TRUE if the left operand is a subset of the right operand (i.e. if
evay element of the left operand appears as an element of the right
operand), and FALSE otherwise.

setwith ary Yields the alue obtained by adding the value of the right operand as
an element to the left operand set value. If thisi& is already in the
set, then the first operand value is yielded unchanged. An error results
if the right operand is undefinédm).

tuplewith ary The result is a tuple whose length is one longer than the original left
operand glue as a result of concatenating the right operand value as a
new last element. An error results if the right operand is undefined.

4.2.3. CompoundOperators

For each binary operatpincluding user defined binary operators fromdeclarations, a
corresponding compound operator exists whose name is formed by appending a / (slash) to the
usual operator name, for example **/ is the name of the compound operator corresponding to the
exponentiation operatorThe slash may either immediately folldhe operator name, or blanks
may intervene (i.e. the operator name is actually composedaEparate tokens).

The compound operator may be used in one ofvtays. Itcan be used as though it were a
unary operatorn this case, the operand must be either a set or tuple, i.e. the expression form is
one of:

bop / set
bop / tuple

where bop is the name of the base operdtoe efect is to calculate a result by applying the
binary operator successly to the elements of the set or tuple:

el bop e2 bop e3 bop ...

where el,e2,e3 are successdements of the set or tuplén the case of a set these elements are

in an arbitrary orderlIn the tuple case, the elements are in sequence and include undefimed
values from "holes" in the tuple. Normal usage is that in the case of sets, it only makes sense to
use an operator which is commuiatibecause of the arbitrary order of the elements). In the tuple
case, the use of a non-commutatperator is well defined although unusual. Since most opera-
tors cause an error if\gn undefined operands, the use of a compound operator form with a tuple
operand which contains holes will usually cause an error.

If there is only one element in the tuple or set, then this element value is returned as the
result (and the operator isvae applied). If the unary compound operator form is applied to a null

Chapter 4 The SETL Programming Language Page 65

set or tuple, the result is undefined (ica).

The other form of use of the compound operator is binary withgverands. The right
operand must be a set or tuple, as in the unary case, but the left operand nyayahe=an

ary bop / set
ary bop / tuple

The effect is to include the value of the left operand as the first operand value in the computed
sequence:

ary bop el bop e2 bop ...

where el,e2,.. are elements from the set or tuple operand as in the unary case. If the binary form is
applied to a null set or null tuple, then the left operand value is yielded as the result. The left
operand thus acts as an initial value for the computation. If the operator is comeranztasso-

ciative, then this value is often the identity element, for example 0 in the case of addition.

The following ekamples indicate some of uses of the compound operator form. Note that the
set or tuple operand may be an explicit set or tuple former to obtain the effect of a direct iteration:

a =+l $sum of elements in gmif t=[]

a =0+ $same, but 0 ifH[]

O+/[a(i) * b(i) : iin {1..#a}] $ dot product

min/s $minimum element in a set

*[x int|x/=0] $ product of non-zero elements in t

If the iteration is explicitly gien using a formera tuple former should normally be used. If a set
former is used then duplicate elements will only appear once:

0+/x in t| x > G}$ duplicate elements not included

A more detailed and precise description of the meaning of compound operator forms can be found
in appendix nn where a translation in terms of waleint SETL code is gen.

4.3. AssignmentStatements
Assignment statements in SETLvilahe general form:

Ihs = expression;

The expression is formed from basic operands and operators as described ividhis peetions.

Lhs is the taget of the assignment, and hasesal possibilities as described later on. The semi-
colon at the end terminates the statement and is considered to be part of it. All statements in SETL
are terminated by a semicolon.

Chapter 4 The SETL Programming Language Page 66

The basic action of an assignment statement is to computeltieerepresented by the right
hand side expression and then to perform the assignment. The assignment action depends on the
form of the left side which has\s®al different possibilities.

Identifier
If the left hand side is a simple identifidren the result is simply to assign the value of the
right hand side as its wevalue, the old value being lost. This mayée efect of dynam-
ically changing the datatype of the identifier.

String Slice
A string slice can only be used on the left side if the corresponding right hand side is a string
value, otherwise an error results. The effect is to modify the string value by replacing the
selected slice with the right hand sidaue. This may cause the length of the string to be
increased or decreased as shown in the following examples:

a ='ABCDEF’;

a(2.4)='XY"; $ a='AXYEF’
a(4.) ='1234"; $a='AXY1234’
a2 ='(); $a="A()Y1234’

As indicated in the abe examples, the usual defaults are permitted. An error results if the
specified limits do not select a defined substring of the original stiting possible to spec-

ify a null string by using aalue for the lower bound which is exactly one greater than the
upper bound. The effect is specified by the following rule:

a(b..c)=d means a=a(l..b-1) +d + a(c+1..#a)

Tuple Slice
A tuple slice can be used on the left side of an assignment only if the corresponding right
hand side value is a tuple. The effect is similar to the use of a string slice on the left side:

t :=[10,20,30,40];

tf2.2] =[5,6,7]; $t=[10,5,6,7,30,40]
t[3..] :=[7,8]; $t=[10,5,7,8]

t[1..2] =[1; $t=[7,9]

Tuple Selection
A tuple selection as a left side for an assignment allows a single specified element of a tuple
to be modified:

t:=[10,20,30,40];
t(2) =15; $t=[10,15,30,40]
t(4) = om; $t=[10,15,30]

Chapter 4 The SETL Programming Language Page 67

t(6) =5; $t=[10,15,30pm,om,5]

As shown in the ab@ examples, the assignment may cause the length to decrease (if the
last element is assigned thelveom), or increase (if an assignment is made to aipusly
non-existent element).

Tuple An enumerated tuple can be used as a left hand side of an assignment if each element of the
enumeration is itself aalid left hand side. The corresponding right hand side must itself be
a tuple and the effect is to perform a series of assignments using correspoaldieg v
extracted from the right hand side tuple.

a =[10,20];

[b,c] =3; $b=10,c=20
xyl:=[2,3];, $x=2,y=3
[c,d]=[d,c]; $interchanges c,d

The last example arks because the right hand sidevauated first, forming a tuple with
copies of the old values of ¢ and d before the assignment is made.

It is permissible for the tuple on the right to be longer (extra values are ignored), or shorter
(om’s are supplied) than the tuple on the left. It is also possible to use a minus sign as one of the
components of the left side tuple, indicating that the corresponding assignment should be skipped:

[a,b,c] =[1,2]; $a=1,b=2,c=om
[a,b] =[10,20,30]; $a=10, b=20
[a,-,c] :=[10,20,30]; $a=10,c=30

A special case occurs when the right hand sideris The effect if to undefine all the left sidalv
ues:

[a,b,c] =om $a=b=c=om

Single Valued Map Reference
If a single valued map reference is used as a left side, then the effect is ve teenpair
which starts with the specified domain value (if it is already present), and add the pair corre-
sponding to the nevalue.

m ={[1,2], [2,4], [3,5]};
m(1) =5; $m={[1,5], [2,4], [3,5]}
m(4) = 9; $m={[1,5], [2,4], [3,5], [4.9]}

If the right hand side ism, then the pair is still renved, but no pair is added:

m(2) =om; $m={[1,5], [3,5], [4.9]}

Chapter 4 The SETL Programming Language Page 68

An error results if the original set value is not a singliel@d map, i.e. if it contains yaele-
ment which is not a tawdement tuple, or if tw pairs hae the same first element value.

Multi-Valued Map Reference
If a multi-valued map reference is used as a left side, then the effect is teerdhaxisting
pairs starting with the specified domain element, and add the set of pairs specified by the
right side value:

m = {[1,1],[1,2],[2,4]};
m{1}:={3,4} $ m={[1,3],[1,4],[2,4]}

If the right hand side is not a set, or if the left side set value is not a map, then an error
results. If the right hand side is the null set, then no pairs are added:

m{1}:={}; $m={[2,4}

Chapter 4 The SETL Programming Language Page 69

Multiple Subscripting

In the abwe examples of subscript forms on the left side:

(x..y) String slice
(x..y) Tuple slice

x) Tuple selection
(x) Single valued map reference
{x} Multi-valued map reference

the subscripted quantityas a simple identifielSETL actually permits this quantity to be itself
ary valid left hand side. The meaning of such a compound assignment is described byuhe follo
ing equvalence, where (x) stands foryaof the abee subscript forms:

Ihs(x) =vy;
means

t0 = Ihs;

t0(x) =y;

Ilhs =1t0;
Since the lhs may itself)la compound form, this definition is recwsj and the third line of the
translation may itself need expanding.

Although this definition seems compléts aim is actually simple. The object of the assign-
ment statement is to malhe left side hae the appropriate value after the assignment is complete,
and this effect is achied even in complex cases by the alve wle.

Multi-variable Map References
The same short hand notations for dealing with maps of more tharanabkle which can
appear in expressions are also permitted as left hand sides of assignments with similar
meaning:

a(b,c..n)=x; $means a([b,c..n]Fx;
a{b,c..n} =x; $means a{[b,c..n]}=x;

4.3.1. AssigningOperatoss

For each defined binary operatancluding user defined operators introduced withopn
statement, there is a corresponding assigning opgvettose name is formed by appending the
characters= to the operator name. Thedeaxt of such an operator is to perform the usual computa-
tion and then assign the result back to the left operand, which must thereferbénform of a
valid assignment left hand side. Most often these assigning operators are used directly in statement
forms as in the following examples:

Chapter 4 The SETL Programming Language Page 70

amax:=5; $set ato maximum of current value and 5
bwith:=6; $adds the element 6 to the setb
i+:=1; $increment integer value of i by one

It is also possible to use assigning operators withirkpression, in which case the value yielded
is the computed result and the assignment occurs as a side effect:

a(i+=1) =5; $incrementi by 1, assign i'th element

The assignment operator itself is a special case of an assigning operator and thus may also be used
within an expression, the value being the assigned result:

a=b:=1; $multiple assignment,ab=1
a=3+c=5; $c=5,a=8

The following special assigning operators modify both their operands which must therefore both
have the form of \alid assignment left hand sides. It is not possible to appetalary of these
operator names, nor is it possible to form compound operator forms by appending a slash.

Ihsfrom set anarbitrary element (in the same sense astheoperator) is selected
from the right hand set operand if it is non-ndfthis value is assigned
as the n& value of Ihs. The right operand is assigned\a s&t value
consisting of the old set value less the selected elentietite right
operand is the null set, then the Ihs is set to undefim®) and the
right operand value is unchanged.

Ihsfromb tuple If the right operand is not the null tuple, then the first element of the
tuple (i.e. the element ingded by the index value 1) is assigned as the
value of Ihs, and the right operand is assignedva tuple value con-
sisting of the remaining elements of the tuple. If the right operand is
the null tuple, then Ihs is set to undefir(edh) and the right operand
value is unchanged.

Ihsfromb string If the right operand is not the null string, then the first character of the
string is assigned as thalue of |hs, and the right operand is is
assigned a ne string value consisting of the remaining characters of
the string. If the right operand is the null string, then Ihs is set to unde-
fined(om) and the right operand value is unchanged.

Ihs frome tuple If the right operand is not the null tuple, then the last element of the
tuple is assigned as thalue of Ihs, and the right operand is assigned a
new tuple \alue obtained by removing the last element (i.e. setting it to
undefined). Ifthe right operand is the null tuple, then lhs is set to
undefinedom) and the right operand value is unchanged.

Ihsfrome string If the right operand is not the null string, then the last character of the
string is assigned as the value of |hs, and the right operand is assigned

Chapter 4 The SETL Programming Language Page 71

a rew gring value consisting of the remaining characters. If the right
operand is the null string, then Ihs is set to undefijoed) and the
right operand value is unchanged.

4.3.2. QuantifiedTests

Quantified tests are specialpeession forms yielding a boolean result (TRUE ALSE)
and which therefore can be used in contexts requiring a@sintified tests wolve an mplied
loop and appear in three forms:

existsiterator | test
notexistsiterator | test
forall iterator | test

The syntax and interpretation of the iterator is further described in the section on iterator forms
which appears in the next chaptés indicated, the iterator must contain a such that test preceded
by the | character (or the egaint st keyword).

In each case, the iterator causes an implied loop tedoated.

In the case of thexiststest, the result is TRUE if the test succeeds (yields TRUE) ypofan
the loops. As soon as the test succeeds, the iteration is abandovied @eaiteration \ariables
set to the values for which the test succeeded) and the result of the expressidk.isf Tie test
fails for all loops, or if the loop is notxecuted at all, then the result is FALSE and the iteration
variables, if ay, ae set to undefinedThe notexistsform executes the same test loop, but yields
TRUE if the test neer succeeds and FALSE if the test does succeed one some iteration.

if existsi in [1..#1] | t(i) & Othen
$with i = 1st non-zero element in t

else

$if no non-zero elementsziom

end if;

if notexists[a,b]in m | a=b then
$if no such element, == om
else
$a,b set to element withra
end if;

Theforall test also sets up a loop. For each iteration of the loop, the specified tettased. If
this test yields FALSE on griteration of the loop, thenvauation of the loop is immediately ter
minated, the result of tHerall test is FALSE, and the loop variables, ifyaae left with the al-
ues causing the test tailf If the loop terminates with the test conditiaalaating to TRUE for all
iterations, then the result of tifierall test is TRIE. A special case of this last rule arises when
there are no iterations (e.g. a test on a null set). Such awegs abturns a result of TRUE.

Chapter 4 The SETL Programming Language Page 72

if forall iin [1..#t-1] | t(i) < t(i+1)then
$tuple elements are sorted,am
else
$iis index of out of order pair
end if;

if forall x in s, yin s | (x opy) in sthen
$sis dosed under operatoop
else
$x,y set to counter example
end if;

It is possible to use these quantified test forms as parts of larger expressions, but parenthesization
is required except when a quantified test is used as the test in another quantified test:

existsain x | c(a)and d(a)
existsain x | (c(a)and d(a)) $means the same
(existsain x | o(a))and d(a) $ to get the other meaning

if existsain c |
existsbin x |
forall yinz:
existsrin s|a=rthen...

4.3.3. OperatorPrecedence Rules

The table in this section shows the precedence rules which determine the order in which the
operators in an expression ak@leated. If two operators share a common operand, then the one
with the higher precedence igakiated first. If both operators vmthe same precedence, then the
left hand one iswaluated first (i.e. operators of avgnh precedence el are evaluated in a left
associatie manner.)

Paentheses may be used freely to emphasize or alter the order of operations as determined
by this table.

Chapter 4

Precedence
11

10

The SETL Programming Language

Page 73

Opators

= (on left side)
assigning operators (on left side)
from (both sides)

All unary operators except
not and theis_xx operators.

*k
* [mod div

-

User defined binary operators
=/=<<=>>=in notin subset incs
not and theis_xx operators

and

or

impl

:= (on right side)
assigning operators (on right side)

The following examples of equalent expressions with and without parentheses illustrate the oper

ation of these rules:

a+b+c*d
(@a+b)+(c*d)

a+b+=cdivd
a+ (b +=(cdiv d))

a+ceilb:=c
a+ (ceil(b =c))

Compound operators used in the unary form (with no left operand)tha same precedence as
other unary operatorsCompound operators used in the binary formehhe same precedence as
the operator from which tlyeare constructed.

Chapter 4 The SETL Programming Language Page 74

The precedence rules also exclude the use of quantified tests as operarydspefator,
unless the are enclosed in parentheses. The only case in which a quantified test can appear as part
of a larger expression is when one test appears as the iterator test of another quantified test.

4.3.4. SideEffects

The fact that assigning operators can be used witkjinessions gies fise to questions
about possible orders of side effects. For example, what is the value of the expression:

(i+=3)+i+(i=5)

and what is the value of i after computing this expression?

SETL deals with this question by specifying that the order of operations within a single
expression is unpredictable. This means that expression having side effects whose result
depends on the order in which the various parts of the expressiordaater gves an undefined
result.

In general, the use of multiple assignments to the same variable within a sioglesen
may gie rise to such an undefined result and shouldvbrled. It is also riskto assign a value to
a variable in one part of an expression and reference this sariadle in another part of the
expression which may bevaluated before or after the assignment.

Another case of possible side effects arises in connection with the left operand of an assign-
ing operator which has a side effect itself, typified by the following question:

a(x)+=1 means a(xra(x)+1

How mary times does a(j+=1)+:=1 increment j?

The rule follaved here is that the result is undefined if the answer to the question matters,
that is if the result of the assignment, or the resultialges of ay identifiers assigned as a side
effect, depends on whether there are one oraxsuations, then the result is undefined. Thus the
assignment a(j+1)+:=1 is invdid.

The purpose of making all these nasty cases undefined igetdhgi compiler freedom to
choose the easiest or most efficient translation without being hampered by worrying about peculiar
cases which do not occur in practice. The progransjay’in this respect is tovaid "tricky" use
of side effects and malaure that these cases do not appear at all!

CHAPTER 5

CONTROL STATEMENTS

This chapter describes the statements in SETL which are used to controktbegifocess-
ing.
5.1. Conditional Statements & Expressions

The conditional statements in SETL allthe flov of control to be determined on the basis

of specified tests. Conditional expressions vallgelection of a calculation in anxgression
depending on the outcome of a test.

5.1.1. IfStatement

A basic control structure in SETL is ttile conditional statement, which allis selection
among sequences of program statements txdmited depending on the outcome of a tdsdte
simplest form is a tavway if statement:

if testthen
block1
else
block2
end if;

The test after thd is evaluated. If it succeeds, then the series of statements (zero or more) which
comprise blockl arexecuted. If the testdils, then the series of statements in block2 aeeuted.
The following are some examples of thiotway if structure:

if a> 3 or status=error’ then
print(BAD A VALUE OR OTHER ERROR);
a=3;
status = 'ok’;
else
x(a) =2;
print(y(a));
end if;

Chapter 5 The SETL Programming Language Page 75

Chapter 5 The SETL Programming Language Page 76

if marked(’x’)then stop; else gotc; end if;

if (@>3or b<2 andnotc>3then

d=a+b+g
else
a=2;
b:=0;
end if;

The indentation used in the aleoexamples (except for the last one which can fit all on one line) is
not required by the SETL language, but it represents a recommended style whicresmgad-
ability of programs.

The elsekeyword and its follaving statements in block2 may be omitted, in which case no
action occurs if the test fails:

if d=0then
print('zero diagonal element’);
stop;

end if;

Theend if terminator may be written in twother styles. It can be shortenecetad; which is use-
ful in the case of shorif statements where no confusion can arise. Alterggtit can be
expanded by copying one or more tokens from the test in the correspdnaighown in the fol-
lowing examples:

if a > 3then print(a);end if;
if a > 3then print(a);end if a;
if a > 3then print(a);end ifa > 3

This expanded form is particularly useful for very long if statements, since it helps the reader to
match upends with their corresponding tests. It also helps the compiler perform this match up
if errors hae been made in the program.

Since anf statement is considered to be a single statement itself, ending with a semicolon
as usual, it may appear as one of the statements thether elseblock, allowing nesting of con-
ditional tests to an arbitraryvd. A special case of such nesting occurs whesraéconditions
are tested in sequence as in the following example.

if day="sun’ then

d:=1,
else
if day="mon’ then
d=2;
else

if day="tue’then
d=3;

Chapter 5

Although this achiees the intended effect, it illustrates theslavardness of making sure that all

The SETL Programming Language

else
if day="wed’ then
d:=4;
else
if day="thu’ then
d:=5;
else
if day="fri' then
d =6;
else
d=7,
end;
end;
end;
end;

Page 77

the end statements match up. The following altenmatgpproach is easier to write, but les§i-ef
cient since all the tests are madevarg case.

if day="sun’ thend :=1; end;
if day="mon’ thend := 2; end;

if day="tue’

thend =3; end;

if day="wed’ thend := 4, end,;

if day="thu’

thend =5; end;

if day="fri’ thend :=6; end;
if day="sat’ thend :=7; end;

Furthermore, there are cases, unlikis example, where it is not merely ifieient, but definitely
wrong, to perform a test when an earlier test has succeeded.

A special leyword elseif allows the sequence to be written in an efficient manner without
having to countend statements. Wherer elseandif keywords appear immediately adjacent to

one otherthey may be replaced by the singleyvord elseif,and the correspondirend termina-
tor is omitted. Thus we can write:

if day="sun’thend :=1;
elseifday="mon’ thend = 2;
elseifday="tue’thend = 3;
elseifday="wed’ thend = 4;
elseifday="thu’ thend :=5;
elseifday="fri' thend :=6;

elseifd = 7;
end;

Chapter 5 The SETL Programming Language Page 78

In this form, the tests are in sequence and as soon as one test is TRUE and its corresponding block
is executed, the remainder of the tests are abandoned.

5.1.2. IfExpression

A special form of expression called a conditional expressioifi expression is similar in
form to anif statement:

if testthen exprl elseexpr2 end

This may be used anywhere that a expression is permitted. The effectasbeceither exprl or
expr2 depending on the result of the test. The result of the &nérpression is then the value of
the single gpression ealuated. The terminator must lead as shown (noénd if or end if with
extra tokens). Some examples of conditional expressions are:

print(if a > 5then b elsef(a) end);
maxab = if a > bthen aelseb end,

5.1.3. Caséstatement

The case statement is a generalization of tlfeconcept which allows one of \sal
sequences of statements to be selected depending on a set of associated tests. The general form is:

case of

(testl): blockl

(test2): block2

(test3): block3

(testn): blockn

elseblocke

end case $ or simplyend,

Each of blockl,block2,.. and bloeks a £quence of one or more statemeriEsch of the xpres-
sions testl,test2,.. ivauated and must yield a value of WR or FALSE. If none of thexpres-
sions yields TRUE, then thelseblock, blocke, is xecuted. If one or more of the tests yields
TRUE, then one of the associated blocks of statementstsited. Ifmore than one test yields
TRUE, the choice of which block tokecute is made in an arbitrary mannéhe casestatement
thus differs from a similar sequenceifofindelseiftests where the tests are made in sequence.

It is possible to attach more than one test tovendiranch of the case by:
(testl,test2,.. testn): blockn

In this case, blockn is a candidate for beingcated if aly one of the tests testl,test2,.. yields
TRUE.

The elseclause, together with its associated block of statements can be omitted, in which
case, theasestatement has no effect if none of the tegttuates to TRUE.

Chapter 5 The SETL Programming Language Page 79

If there is at least one test whickakiates to TRIE, then the other tests may or may not \aue
ated. Efectively the separate tests arealeated in some arbitrary ordear even at he same time
in an unspecified sequence, and the program cae makssumptions about the order or about
which tests are actuallyauated.

We @an nav write the days of the week example asaaestatement:

case of

(day="sun’): d =1;
(day="mon’): d = 2;
(day="tue’): d =3;
(day="wed): d :=4;
(day="thu’): d :(eq 5;

(day=fri'):d: =6
(day="sat’): d =7;
end case

In this particular case, at most one of tasebranches could be true, so there is néedihce in
effect between thisasestatement and the sequencéf afndelseiftests gien in the previous sec-
tion. The following example shows a case in which there is a difference:

if k>10then
print (k>10%);
elseifk<5then
print (k<5’);
elseifk<10then
print (k<10%;
else
print (k=10");
end if;

case of
(k>10):

print (k>10%);
(k<5):

print (k<5’);
(k<10):

print (k<10%;
else

print (k=10");
end case

If these tvo s2quences arexecuted with k having thealue 4, then the top example usih@nd
elseifwill always print k<5 since this test isvedys made before the k<10 test. In the CASE state-
ment, either k<5 or k<10 might be printed since both conditions are satisfied and the order in
which these tw tests are made is not specifielgeneral rule is to usé andelseifonly when the

order is important. This serves to warn the reader of the program that the order duesibas

Chapter 5 The SETL Programming Language Page 80

is important.

One particular application of the undefined order in which the tests are made is illustrated by the
following:

case of
(true):
(true):
end case

This construction can be used ifdyossible sequences of statements carxbeuged and it does

not matter which is»ecuted, or in ay case the programmer does not wish to indicate a choice
between the tav possibilities. The implication is that the program wilbik no matter which of

the two branches is xecuted. This gies a ontrol flov analog to the use of tharb operator in
expressions and alles the programmer toveid specifying choices which are not important to the
algorithm. A similar situation might arise in a sorting program where the equal comparison condi-
tion can be treated as either less than or greater than:

case of

(a(i) <= a(i+1)):
(a(i) >=a(i+1)):
end case;

It is quite common for the tests incasestatement to hee te form of testing some particular
variable or expressionalue for equality with a series of constants. The days of the weehpée
is in this form. A special form of theasestatement is\&ilable to simplify the writing of such
cases:

caseexpr of

(constantl): blockl

(constant2): block2

(constant3): block3

(constantn): blockn

elseblocke

end case; $ or end; or end case<tokens>;

The expression in the header expnidgated (once) to ge a est value. A block isxecuted if its
associated constanti expression is equal to theakst.VAs in the full form of theasestatement,

if more than one alue matches, then an arbitrary choice is made between the matching alterna-
tives. Theelseblock is executed if no alues match and can be omitted if no action is required in
the case where no values matds in the full form, multiple tests can be attached to one branch

by:
(constantl,constant2,...constantn): block

in which case the block is a candidate feecaition if ary of the attached values match.

Chapter 5 The SETL Programming Language Page 81

The actual rules for what can appear as constants here are the sanwastfieclarations, i.e.
denotations, previous declared constant values, or sets or tuples of constant values.

We @an nav write the days of the weeka&mple in a more compact form using thésion
of thecasestatement:

caseday of
(sun’): d =1;
(mon’): d =2;
(tue’): d =3;
(wed):d =4;
(thu’): d :=5;
(fri"): d:=6;
(sat):d =7;
end casalay;

Note that the expressions attached to the branches in this form are general expressions and are not
required to be constants, although the use of constants in thigtcdgntemmon. As in the full

form of the case, no assumptions can be made about the ordeluatien of thesegressions,

or even ébout whether or not tiyewill be evaluated if there is a matching altervati

5.1.4. Casdexpression

Just as there is ahexpression corresponding to #nstatement, there is@seexpression
which corresponds to@asestatement. The form is:

caseexpressiorof
(valuel): expressioni,
(value2): expression2,
(value3d): expression3,
(valuen): expressionn
elseexpressione

end

The value of theaseexpression is the value of the selectegression, or the value of thedse
expression if no expressions match. If #lseand its follaving expression are omitted, and there

is no matching entnthen the result of theaseexpression iom. As in the case statement, a sin-

gle expression branch may be labeled with more than one constant. Note that there is no comma
following the last branch of thease(whether or not arlseis present).

We will complete this section by weiting the days of the week one final time usinggae
expression:

d := casedayof
('sun’): 1,

Chapter 5 The SETL Programming Language Page 82

(mon’): 2,
('tue’): 3,
(wed): 4,
('thu): 5,
(fri’): 6,

(‘sat’): 7

end;

5.2. LoopStatement

The loop statement in SETL allows a series of one or more statementxezited repeat-
edly. There are tw basic forms. The first form uses an iterator:

loop for iteratordo
$loop body
$zero or more statements
end loop $ orend, or end looptokens;

In addition, parentheses can be used to replaceoihanddo:

(for iterator)

end; $ orendtokens;

In this case, the token sequence afieal copies tokens starting immediately after the left paren-
thesis which opens the loop.

The iteratoywhose possible forms are discussed in thevatlg section, controls the num-
ber of times the loop isxecuted and also may assign values to one or more iteration variables.

The other form of loop is written:

loop
init blocki $loop initialization statements
doing blockd $step statements at start of loop
while testw $termination test at start of loop

stepblocks $step statements at end of loop

until; testu $ermination test at end of loop

term blockt $loop termination statements
do

blockb $body of loop

Chapter 5 The SETL Programming Language Page 83

end loop $ or end; or end looptokens;

As with the iterator form of loops, theywordsloop anddo can be replaced by parentheses:

(iniut b doing b while t stepb until t term b)
end,; $ or endtokens;

The easiest way of describing the precideatfof this loop form is to write out the sequence of
statements which areeeuted when this form is used to construct a loop:

blocki $init block
head:

blockd $doing block

if not (testw) $while test

then gototerm;

end if;

blockb $body of loop
step:

blocks $stepblock

if (testu) $until test

then gototerm;

end if;

gotohead;
term:

blockt $term block

If a quit statement is>ecuted within the loop (i.e within théoing or step blocks or in the loop
body), then it is equélent togoto term in the abee translation. Acontinue statement is similary
equivalent togoto step.

If any of theinit, doing, step or term clauses are omitted from the iteratiien the corre-
sponding block is simply remred from the loop. Similarly with thevhile anduntil tests, if either
of these is omitted then the corresponding test is omitted from the loop. Some common forms of
loops using simple cases of the iterator construction are as follows:

loop whiletestdo $ while loop, test at start
loop until testdo $ until loop, test at end

Chapter 5 The SETL Programming Language Page 84

loop do $ indefinite loop

5.2.1. Quit& Continue Statements

Within a loop, tvo special statements arevailable. Thequit statement causes immediate
termination of &ecution of the loop, and is written:

quit;

quit loop;

quit tokens;

quit loop tokens;

The last forms are useful in the case where loops are nested. By copying tokens from the corre-
sponding iterator (including the tekloop only if the loop vas written in thdoop-do form), it is
possible to specify which loop is to be terminated.

The continue statement causes the current iteration of the loop to be abandoned, and the
execution of the loop continues with the next iteration (if there is one left to go). The form is:

continue;

continue loop;
continue tokens;
continue looptokens;

As in the case of thquit statement, the forms which gopokens from the corresponding loop
iterator can be used to specify which loop is to be continued in the case of nested loops.

Normally quit andcontinue statements appear within the body of the loop, byt¢ha also occur
in the doing andstep forms of the alternate loop form. Note thatytlvannot occur in thait or
term blocks (unless referring to a surrounding loop).

The use of theuit or continue statements other than statically inside a loop is erroneous.-In par
ticular, it is ot possible to xecute thequit or continue from a procedure or refinement called
within the loop body.

5.2.2. lterator Forms

Iterators are used to control loops, in set and tuple formers, and in quantifig@xissss
forall). The form of an iterator determines the number of times the associated lo@outed
and also assigns values to one of more identifiers called iteration variables.

The following section describes the basic iterator forms. More precise definitions of these
iterator forms can be found in Appendix nn, where translations intwabepti loop forms with
explicit step statements and tests aremi

lhsin set Theiteration variable lhs is set to successialues from the set, cho-
sen in arbitrary ordefThe number of iterations is equal to the number
of elements in the set. One particular form which is useful in iterating
through a map uses a lhs of the form [a,b] which causes a and b to be

Chapter 5 The SETL Programming Language Page 85

set to succesgt domain and range values.

Ihsin string Theiteration variable is set to succegstharacters of the strincalue
starting with the first and ending with the last. The number of iterations
is equal to the length of the string. No iterations are performed if the
string is null.

Ihsin tuple Theiteration variable lhs is set to successdements of the tuple in
order by increasing index. The number of iterations is equal to the
index of the highest defined element. If there are no holes (embedded
undefined alues), then this is equal to the number of defined elements.
If there are holes, then the iteration variable will be semtdfor the
undefined inde positions.

Ihs1=map(lhs2) Thidorm is used to iterate through the elements of a map, which must
be single valued. The iteration variables lhs1 and |hs2 are set to succes-
sive dbmain and rangealues respeatély, the order in which pairs are
taken being arbitraryThe number of iterations is equal to the number
of elements in the map.

Ihs1=map{lhs2} Thisform of map iterator can be used with multi-valued maps. On suc-
cessie iterations, Ihsl is set to the values in the domain of the map and
Ihs is set to the corresponding image set. The number of iterations is
thus equal to the cardinality of the domain.

Ihs1= string(lhs2) Theteration variable lhs2 is set to succesdnteger values 1,2... up to
the length of the string. The iteratioariable lhsl is set to the corre-
sponding character from the string. The number of iterations is thus
equal to the length of the string.

Ihs1=tuple(lhs2) Thateration variable |hs2 is set to successnteger values 1,2,.. up to
the highest indefor which the tuple is defined (which is therefore the
number of iterations). The iteratioranable lhsl is set to the corre-
sponding tuple value.

In these iterator forms, the iteration variables can lyevalid left hand side. For example [a,b]
can be used as an iteraticariable if all the iteration values are pairs, and the effect is to set a and
b to auccessie values of the elements of the pairs. On normal completion of a loop (but not on
premature termination from@uit, satisfiedexistsetc.) the iteration variables are all set to unde-
fined(om), so the final values are notadlable outside the loop.

The usual shorthand notation can be used in iterator contexts for iterating through multi-
argument maps:

Ihs=map(a,bn) means lhs=map([a,b..n])
Ihs=map{a,b.n} means Ihs map{[a,b..n]}

It is permissible to modify the values ofyaiteration \ariables or other identifiers mentioned in the
iterator dthough such usage is not recommended. Such modifications dofexdt také alues
yielded by the iteration. For example, the following iteration:

Chapter 5 The SETL Programming Language Page 86

a=[1,2,3,4,5,6,7,8,9];
(for iin @) a=a+a; i+=1; end;

still iterates nine times with i being set to the sucees&lues 1 through 9.

Any context requiring an iterator (loops, set formers, tuple formers, quantified tests) can use
ary of the iterator forms described. More complicated iterator forms camilieup from these
basic iterator forms géen:

Compound iterators are formed as a sequence of basic iterators separated by commas. The
effect is that of a series of nested loops, in which the last iterator is stepped most rapidly and
the first iterator least rapidlilote that ajuit statement will leae dl the nested loops in this

case and aontinue will continue the inner loop (in this respect théeef is slightly difer-

ent from actually writing nested loops).

Any iterator consisting of one or more basic iterator forms can be followed by a such that
clause:

iterator | test

The effect is that the iterator is stepped as uswdlpb each iteration test isauated. If
the result is FALSE, then the iteration is skipped, i.e. the iterator is immediateéy oo
the next step. If the test is UE, then the iteration is completed as usual. It is often the
case, but is not required, that the test will perform tests on the values of iteration variables.

The following are examples of loops constructed from iterator forms:

(for i in [1..#a], jin [i..#a])

c = a(i)*a());
end;
(for xiny, ain b |x=a)
end;

(for x =c(i) | x=",)
end;

5.2.3. Se& Tuple Formers

The effect of set and tuple formers can be describedtly by writing equialent loop
forms. Firstthe set former:

{expression : iterator}
is equialent to the followingexpr block:
expr
t1={};

loop for iteratordo
t1 with:(eq expression;

Chapter 5 The SETL Programming Language Page 87

end;
yieldst1;
end

The tuple former:
[expression : iterator |
differs only in that a tuple is formed, and is eglént to the followingexpr block:

expr
t1=[];
loop for iteratordo
t1 with:= expression;
end;
yield t1;
end

As implied by the translations, the result is the null set or null tuple if the iterator does not cause
ary iterations of the loop.

Multiple iterators are permitted, as in the following example:
{x+y : x in seta, yin f(X) | x/=y}

If the iterator is a single (hnon-compound) iterator with a such that test, then the following-abbre
ated forms arevailable:

{ain expr | t} $for {a: ain expr | t}
[ain ... |] $for [a: ain expr | {]

5.3. GotoStatement
Any statement in SETL can be labeled:

label: statement;

As shown, a single statement cawvéhanly one label. The label names are local identifier names
which are not explicitly declared and which are not used fpotarer purpose.

Thegoto statement, which has the form:
goto label,

has the effect of transferring control to the labeled statem@ato statements are forbidden to
malke any of the following types of transfer:

Chapter 5 The SETL Programming Language Page 88

>From outside the body of a loop into the body

Into thethen block of anif from outside

Into theelseblock of anif from outside

Into theinit, doing, step, until blocks from outside
Into the blocks in &aseor if statement from outside
>From one block in aaseor if statement into another
>From outside amxpr block into its body

Since all labels are local, it is also impossible to transfer from one procedure to ,amother
from a procedure body to the main program.

5.4. StopStatement
Thestop statement, written simply as:

stop;
may appear anwhere in a SETL program and causes immediate termination of progeaon e
tion. Thetwo ways of terminating a SETL program normally are kgcation of astop state-

ment, or by recuting "off the end" of the main program block.

5.5. Rass Statement
The passstatement, written as:

pass
has no d&ct when it is gecuted. It is used for placing labels at the end of a block, for branches of
acasestatement where no action is performed, ftoogp body when the actual processing is com-
pleted in the loop headend in aty other situation where a dummy statement is required.

5.6. AssertStatement
Theassertstatement, written as:

assertexpression;

signals an error if the value of the expression is not TRUE.

CHAPTER 6

THE DATA STRUCTURE SPECIFICATION SUBLANGU AGE

Unlike most of the sections of this book s, the title of this chapter probably seems mys-
terious. This is not surprising since it describes a feature of SETL which is unique and therefore
unfamiliar from the use of other programming languages.

The general idea is the following. SETL allows programs to be written without much con-
cern for the detailed data structures required fiiciefit execution. For example in the curriculum
planning problem in chapter 2 (the topological sort), the basic data structure was a graph which
shaved the prerequisite structure. In most other programming languages, a program using such a
graph must decide exactly ludo represent the graph in the memory of the compilitas is a
rather complicated matteand there are seral different ways of representing graphs (linked lists,
adjacenyg tables, bit matrices etc.) Furthermore, once a decision is made oxatliey@nner in
which the data structure should be represented, then the details of this representation epist be k
in mind throughout the program and the text of the program reflects this choice throughout.

In SETL, such detailed decisions do notd&@ be nade by the programmen this particu-
lar example, the graph was simply a set of pairs corresponding to the edges of the graph as read in.
The programmer did not need tovhaany oncern with the xeact manner in which the graph
would be represented. This is highly genient from the programmers point of wiesnce it olyi-
ously reduces the amount of work in writing the progranwéer, there is a penalty paid for this
approach in terms of reducexeeution eficiengy. The choice of data structure representations is
a celicate task. The choice which leads to the mdatiefit program depends on the exact opera-
tions which are performed and the frequemdth which the various operations are performed.
Since the SETL programmer omits this choice, it is left up to the compilerSETL compiler is
not capable of making the best possible choice since it does ve&taugh information, so it
chooses rather general representations which the property that thyeare not disastrously bad,
no matter what operations are performed. On the other hand these general structures are often not
perfect for the particular case at hand and the result is longer than necessary running time.

In some cases, this ifigiency may not be a problemlf a program runs in one second, it
may not matter that it could Y& mun in one tenth of a second if better data structure decisions had
been made. If all the programs you write are in thisgoatethen you can abandon reading the
rest of this chapteOn the other hand, if you ka programs which run for a long time, then the
subject matter of this chapter will be of interest, particularly if you are paying for your own com-
puter time!

Chapter 6 The SETL Programming Language Page 89

Chapter 6 The SETL Programming Language Page 90

Suppose that we i@ a E£TL program which is running perfectlgut slovly, and the rea-
son for the slowness can be tracethiture to use efficient data structure representations. One
approach would be to reprogram in some other lowet language in which the data structure
representation auld be under direct control of the programmidris would hae wo dbvious dis-
adwantages. Firsthe sheer effort of dealing with another language and recoding the entire pro-
gram would be a substantiafat. Second, this approach requires that once the data structure rep-
resentation is chosen, it must be kept in mind throughout the programeapageration on the
structure must be thought out in terms of this representation.

The data structure representation sublanguage of SETL provides an alternate approach.
Instead of reriting the entire program, statements are added which direct the compiler to-use cer
tain specific (and hopefully appropriate) data structuregenGhis information, SETL can gener
ate a more efficient program and the compiler assumesutderbof going though the program
making the necessary modifications. Assuming that the programmer did indeed specify an appro-
priate choice, the desired impement is thus obtained with a minimum amount of error prone
clerical work on the part of the programmer and with no change toxheftéhe working pro-
gram. The general design of the data structure specification language is that statements specifying
representations cannot change the meaning of the programotsiethat can happen is that the
program actually runs slower if an inappropriate choice is made.

The concept is thus reasonably straightforward, but the details of the representation lan-
guage are technical and the rest of this chapgalaims them. Again you are invited to skip the
rest of this chapter if you cavd with the eficiency you are getting n@ using "pure" SETL. If on
the other hand, your monthly computer bills are causing headaches, then read on!

{to be supplied later}

CHAPTER 7

SEMANTIC DEFINITIONS

This chapter contains a more formal definition of most of the semantics of the SETL lan-
guage. As far as possible the definitions are written in SHiilthose fev cases where it is not
possible to use SETL, a construction called a pseudo-comment isAipsgudo-comment is an
english language description enclosed in the atasck and */. It may appear in place of a state-
ment or expression and is conceptually replaced by code which carries out the intent of the
description.

One pseudo-comment which appears frequently is /*error*/ which implies that an error is
caused. The exact effect of such an error depends on the implementation, in most cases,
execution is terminated with an error messagtawever, some implementations may V&

the capability of continuingxecution after such an error has occured.

7.1. Type Test Operators

Since the type test operators are used throughout the definitions of the remaining openators, the
are defined first.

op type (a);
if a=om then/*error*/;
else
return
/* one of the following strings indicating the type of the operand a:
“atom’ “boolean’ “integer’ “real’ “set’ “string’ “tuple’ */;
end if;
end op type;
op is_boolean(a); $test argument is type Boolean

retur n typea="boolean’;
end op is_boolean;

Chapter 7 The SETL Programming Language Page 91

Chapter 7 The SETL Programming Language Page 92

op is_ integer(a); $test argument is type integer
retur n typea="integer’;
end op is_ integer;

op is_real(a); $test argument is type real
return typea="real’;

end op isreal;

op is_string(a); $test argument is type string

retur n typea="string’;
end op is_ string;

op is_atom(a); $test argument is type atom
return typea="atom’;
end op is_ atom;

op is_tuple(a); $test argument is type tuple
return typea="tuple’;
end op is_tuple;

op is_seta); $test argument is type set
return typea="set’;
end op is_ set;

op is_maxa); $test argument has form of map

if is_setathen
return forall xin a |

is_tuplex and #x = 2;
else
return false;

end if;

end op is. map

7.2. Operator Definitions

This section contains SETL definitions of the SETL operatbhe definitions are written in
standard SETL with three minor extensions as follows:

The names of the operators which appear in these OP definitions are the actual operator names and
do not meet the normal requirements for declared operator names.

In some caser om, fromb, frome),the arguments are specifiedvas(write) orrw (read/write).

In a fev cases (e.g. real multiplication), the semantics of the operator cannot be specified in
SETL. In such cases, a pseudo-comment is used to specify the intended result.

Chapter 7 The SETL Programming Language Page 93

op +(a);
case of
(is_integera): $integer affirmation
return a;
(is_reala): $real affirmation
return a;
elsef*error*/;
end case;
end op+;

op +(a,b);
case of
(is_integeraand is_integerb): $integer addition
return a - -b;
(is_realaand is_real b): $real addition
return a - -b;
(is_string aand is_string b): $string concatenation
return /* concatenation of a and b */;
(is_tuple aand is_tuple b): $tuple concatenation
X:=a;
(for i in [1..#b])
X(#a + i) = b(i);
end for i;
return x;
(is_setaand is_seth): $set union
return (awith/{x: x in b});
else/*error*/;
end case;
end op+;

op -(a);
case of
(is_integera): $integer ngaion
return 0 - g
(is_reala): $real ngdion
return 0.0 - a;
else/*error*/;
end case;
end op-;

op -(a,b);
case of
(is_integeraand is_integerb): $integer subtraction

Chapter 7 The SETL Programming Language Page 94

return /* integer difference a-b */;

(is_realaand is_real b): $real subtraction
return /* real difference a-b */;
(is_setaand is_seth): $set difference

return (alesg x: xin b);
else/*error*/;
end case;
end op-;

op *(a,b);
case of
(is_integeraand is_integerb): $integer multiplication
x:=(0 +/ a: 1absb);
retur n if b>=0 then x else-x end;

(is_realaand is_real b): $real multiplication
return /* real product a*b */;

(is_setaand is_seth): $set intersection
return {x : x in a | xin b};

(is_string aand is_integerb): $string duplication

if b <0then /*error*/; end if;
return " +/[a:iin {1..b}];
(is_integeraand is_string b): $string duplication
if a <Othen /*error*/; end if;
return " +/[b:iin {1..a}];
(is_tuple aand is_integerb): $tuple duplication
if b <0then /*error*/; end if;
x:=[I;
(for i in [1..#b])
j = #X;
(for kin [1..#a])
x(j + k) = a(k);
end for k;
end for i;
return x;
(is_integeraand is_tuple b): $tuple duplication
return b * a;
else/*error*/;
end case;
end op*;

op/(a,b);
case of
(is_integeraand is_integerb): $integer division, real quotient
return float a /float b;
(is_realaand is_real b): $real division

Chapter 7 The SETL Programming Language

return /* quotient a/b */;
else/*error*/;
end op/;

op **(a,b);
case of
(is_integeraand is_integerb): $integer exponentiation
if b <0then /*error*/; end if;
return (1 */ a: 1..b);
(is_realaand is_integerb): $real to power of integer
if b <0then /*error*/; end if;
return (1.0 */ a: 1..b);
else/*error*/;
end case;
end op**;

op ?(a,b); $fundefined interrogation
case of
(a Eom):
return a;
(a=om):
return b;
end case;
end op?;

op #(a);
case of
(is_string a): $length of string
x:=0;
(for yin a) x +=1; end;
return x;
(is_seta): $cardinality of set
x:=0;
(for yin a) x +=1; end;
return x;
(is_tuple a): $length of tuple
x:=0;
(for yin a) x +=1; end;
return x;
elsef/*error*/;
end case;
end op#;

op =(a,b); $equality test
casea of

Page 95

Chapter 7 The SETL Programming Language

(b):
return TRUE;
else
return FALSE;
end case;
end op=;

op/=(a,b);
retur n if a=bthen FALSE elseTRUE end;
end op/=;

op <(a,b);
case of
(is_integeraand is_integerb): $integer less than
if /* a lessthen b */then
return TRUE;
else
return FALSE;
end if;
(is_realaand is_real b): $real less than
if /* a less than b *then
return TRUE;
else
return FALSE;
end if;
(is_string aand is_stringb): $string less than
if a=" then
return b /=";
elseifb=" then
return FALSE;
else
case of
(a(1)=b(1)):
return a(2..) < b(2..);
(/* a(1) precedes b(1) in order */):
return TRUE;
else
return FALSE;
end case;
end if;
else/*error*/;
end case;
end op<;

op <=(a,b);

Page 96

Chapter 7 The SETL Programming Language Page 97

case of

(is_integeraand is_integerb):

return a<bor a=b;
(is_realaand is_real b):
return a<bor a=b;
(is_string aand is_string b):
return a<bor a=b;
end case;
end op<=;

op >(a,b):
case of

(is_integeraand is_integerb):

return b< g

(is_realaand is_real b):
return b< g

(is_string aand is_string b):
return b< g

else/*error*/;

end case;

end op>;

op >=(a,h):
case of

(is_integeraand is_integerb):

return a>bor a=b;
(is_realaand is_real b):
return a>bor a=b;
(is_string aand is_string b):
return a>bor a=b;
else/*error*/;
end case;
end op>=;

op abga);

case of

(is_integera):
case of
(a<0):
return -a;
(a>=0):

return a;

end case;

(is_reala):
case of

$integer less or equals
$real less than or equals

$string less than or equals

$integer greater than
$real greater than

$string greater than

$integer greater or equals
$real greater or equals

$string greater or equals

$absolute value of integer

$absolute value of real

Chapter 7 The SETL Programming Language

(a<0.0):
return -a;
(a>=0.0):
return a;
end case;
(is_string a):
if #a £ 1then
[*error*/;
else
return /* integer code for a */;
end if;
else/*error*/;
end case;
end op abs;

op and(a,b):
case of
(a=FALSE);

return FALSE;
(a=TRUE):

case of
(b =TRUE):
return TRUE;
(b = FALSE):
return FALSE;
else/*error*/;
end case;
else/*error*/;
end case;
end op and;

op arb(a);
case of
(is_seta):
if a={} then
return om;
else

return /* arbitrary element from a */;

end if;
elsef*error*/;
end case;
end op arb;

$absolute value of string

$logical and

$ ip evaluation of b and

$ evaluate b and do

$arbitrary element of set

Page 98

Chapter 7 The SETL Programming Language

op ceil(a);
case of
(is_reala): $ceiling of real
case of
(a<0.0):
loop init x :=0; doing x -:=1; do
if float x < athen return x + 1;
end loop
(a>=0.0):
loop init x :=0; doing x +:=1; do
if float x >= athen return x;
end loop;
end case;
elsel*error*/;
end case;
end op ceil;

op div(a,b);
case of
(is_integeraand is_integerb): $integer division
if b =0then /*error*/; end if;
X :=absa;
y:=0;
(while x >= absb)
X -:= absb;
y+=1;
end while;
return y * signa * signb;
else/*error*/;
end case;
end op div;

op domain(a);
case of
(is_mapa): $domain of map
return {x: [x,y] in a};
else/*error*/;
end case;
end op domain;

op even(a);
case of
(is_integera): $test @en integer

Page 99

Chapter 7 The SETL Programming Language

return amod 2 =0;
elsef*error*/;
end case;
end op een;

op fix(a);
case of
(is_reala): $corvert real to integer
assert existx:=1,2.. [float x > absa;
return (x - 1) *signa,;
else/*error*/;
end case;
end op fix;

op float(a);
case of
(is_integera): $corvert integer to real
return /* result of cowerting a to real */;
else/*error*/;
end case;
end op float;

op floor(a);
case of
(is_reala): $floor of real
case of
(a<0.0):
loop init x :=0; doing x -:= 1; do
if float y <= a then return x;
end loop
(a>=0.0):
loop init i:=0;doingi+:=1;do
if float i > athen return i - 1;
end loop;
end case;
else/*error*/;
end case;
end op floor;

op from(wr a,rw b);
case of
(is_setb): $take from set
a=arbb;
if a/=om thenbless=a;end;
return a;

Page 100

Chapter 7

else/*error*/;
end case;
end op from;

op fromb(wr ayw b);
case of
(is_string b):

if b=" then
a=om;
else
a=b(2);
b:=b(2.);
end if;
(is_tuple b):
if b=[] then
a=om;
else
a=b(2);
b:=b(2.);
end if;
elsel*error*/;
end op fromb;

op frome(wr a,rw b);
case of
(is_tuple b):
if b=[] then
a=om;
else
a = b(#b);
b :=b(1..#b-1);
end if;
(is_string b):
if b=" then
a=om;
else
a = b(#b);
b :=b(1..#b-1);
end if;
return a;
elsel*error*/;
end case;
end op frome;

The SETL Programming Language Page 101

$take from start of string

$take from start of tuple

$take from end of tuple

$take from end of string

Chapter 7 The SETL Programming Language

op impl(a,b);
case of
(is_booleana and is_booleanb):
return (not a) or b;
else/*error*/;
end case;
end op impl;

op in(a,b);

if a= om then/*error*/; end if;

case of

(is_setb): $test element in set
return existsxin b | x=a;
(is_string aand is_string b): $test character in string
if #a £ 1 then /*error*/; end;
return exists x1..#b | &= b(x);

(is_tuple b): $test element in tuple
retur n exists x:=1..#b | &= b(x);

else/*error*/;

end case;

op incqa,bh);
case of
(is_setaand is_seth): $set inclusion test
return forall xin b | xin a;
else/*error*/;
end case;
end op incs;

op lesga,b);
case of
(is_seta): $remove et element
return {x in a | X E b}
else/*error*/;
end op less;

op lessf(a,b);
case of
(is_mapa): $remove map element
return {[x,y] in a|x E b}
else/*error*/;

Page 102

Chapter 7 The SETL Programming Language

end case;
end op lessf;

op maxa,b);
case of

(is_integeraand is_integerb):

case of
(a>=b): return a;
(a<=b): return b;
end case;
(is_realaand is_real b):
case of
(a>=b): return a;
(a<=b): return b;
end case;
elsel*error*/;
end case;
end op max;

op min(a,b);
case of

(is_integeraand is_integerb):

case of
(a<=b): return a;
(a>=b): return b;
end case;
(is_realaand is_real b):
case of
(a<=b): return a;
(a>=b): return b;
end case;
elsel*error*/;
end case;
end op min;

op mod(a,b);
case of

(is_integeraand is_integerb):

return a-b* (adiv b);
elsef*error*/;
end case;
end op mod;

op not(a);
case of

$integer maximum

$real maximum

$integer minimum

$real minimum

$integer modulus

$logical not

Page 103

Chapter 7 The SETL Programming Language Page 104

(a=TRUE):
return FALSE;
(a=FALSE):
return TRUE;
elsef*error*/;
end case;
end op not;

op notin(a,b):
case of
(is_setb):
return not ain b;
(is_string aand is_string b):
return not ain b;
(is_tuple b):
return not ain b;
elsef*error*/;
end case;
end op notin;

op npow(a,b);
case of
(is_integeraand is_seth):
if a<0then /*error*/; end,;
return {x in pow b | # = a};
(is_setaand is_integerb):
if b<Othen /*error*/; end;
return {x in pow a | # = b};
elsel*error*/;
end case;
end op npow;

op odd(a);
case of
(is_integera):
return amod 2 /=0;
elsef*error*/;
end case;
end op odd;

op or(a,b);
case of
(a=TRUE):

$test element not in set
$test character not in string

$test element not in tuple

$subsets of gien sze

$subsets of gien sze

$test odd integer

$logical inclusie a

Chapter 7 The SETL Programming Language

$ <ip evaluation of b and
return TRUE;
(a=FALSE):
$ evaluate b and do
case of
(b =TRUE):
return TRUE;
(b = FALSE):
\ return FALSE;
else/*error*/;
end case;
else/*error*/;
end case;
end op or;

op pow(a);
case of
(is_seta): $power set of set
if a={} then
return {{}};
else
X :=arb a;
y ;= pow (A lessx);
return y + {zwith x: zin y};
end;
else/*error*/;
end case;
end op pow;

op random(a);
case of
(is_integera): $random integer
if a>=0then
retur n fix random float(a+1);
else
retur n fix random float(a-1);
end if;
(is_reala): $random real
if a=0.0then
return 0.0;
elseifa < Q0then
return - random-a;
else
return /* random real in the
half open interval [0,a) */;

Page 105

Chapter 7 The SETL Programming Language

(is_tuple a): $random element from tuple
if #a=0then
return om;
else
return a(1 +random (#a-1));
end if;
(is_seta): $random element from set
if a={} then
return om;
else
return random|[x: x in aj;
end if;
else/*error*/;
end case;
end op random;

op rang€(a);
case of
(is_mapa): $range of map
return {y : [x,y] in a};
else/*error*/;
end case;
end op range;

op sign(a);
case of

(is_integera): $integer sign

case of
(a<0):return -1;
(a=0): return 0;
(a>0):return +1;
end case;

(is_reala): $real sign
case of
(a<0.0):return -1;
(a=0.0):return 0;
(a>0.0):return +1;
end case;

else/*error*/;

end case;

end op sign;

op str(a);

Page 106

Chapter 7 The SETL Programming Language Page 107

constdg='0123456789’,
uc="ABCDEFGHIJKLMNOPQRSTUVWXYZ',
Ic ='abcdefghijkimnopgrstuvwxyz’,

q="";
case of
(is_booleana): $boolean to string
casea of
(TRUE’): return #T’;
(CFALSE): return '#F’;
end case;
(is_integera): $integer to string
y ;= absa;
(until y=0)
x +:=dg(y mod 10);
y :=ydiv 10;
end;
return if a <Othen’-’ + x elsex end;
(is_string a): $string to string
if a =" anda(l)in uc + Icand
forall xin a(2..) | Xin uc+lc+dg+'_'then
return a;
else
return q +/ [if y=qthenqg+gelsey end:yin a] + q;
end if;
(a=om): $ undefined to string
return *’;
(is_tuple a): $tuple to string
X:=";
(for yin a)
X+:=""+ stry,
end;
return T +x(2..) +T;
(is_seta): $set to string
(for y in a)
X+:=""+ stry;
end;
return '{' + X(2..) +'};
end op str;

op susbsefa,b);
case of
(is_setaand is_seth): $subset test
return forall X in a | xin b;
else/*error*/;
end case;

Chapter 7 The SETL Programming Language Page 108

end op subset;

op with(a,b);
case of
(is_seta): $add element to set
return {x: x in [y :yin a]with b};
(tuple(a)): $add element to tuple
X = a;
X(#x+1) =b;
return x;
else/*error*/;
end case;
end op with;

CHAPTER 8

SYNTAX

This chapter contains a formal definition of the permitted syntax of SETL programs.
8.1. SyntaxRules

This section contains the syntax rules. A modified forrrdfis used. The syntactic types
(or non-terminals) are strings of small letters, possibly including a underline. The possible alter
natives, if there is more than one, are separated by the | charéeterinals are expressed in one
of the following possible notations:

A string of upper case letters represents a reserved word and can appear in either upper or

lower case letters, or a mixture, in the final program.

A special characteor sequence of special characters, represents itself as a terminal symbol.
In the case of the charactef§]|, enclosing quotes are used tmwid confusion with the
meta-syntactic use of these characters in the description.

Special non-terminal types whose namegitbevith tok_ represent sets of terminals which
are described in the following section.

The following notations are used to extend the nobméktornventions:

A sequence of items surrounded by betsK] is used to indicate that the sequence of items
is optional.

A sequence of items surrounded by bracgss{used to indicate that the sequence of items
may be repeated ymumber of times, or entirely omitted.

The sequence [...] is used to represent the token sequences in an ender where the tokens are

copied from the corresponding start construction.

In some cases, thmnf notation gven is inadequate to state certain restrictions or additional rules.
Special comments preceded by a dollar sign arengifter the rule in question to provide the
needed additional information.

A SETL program consists of a terminal string of type_setl prog, together wythredarenced
libraries, which are obtained as terminal strings of type lib unit.

Chapter 8 The SETL Programming Language Page 109

Chapter 8

setl prog

simple_ prog

module_ prog

direc_unit

lib_unit

dir_spec

dir_item

read. item
write_item
imports_item
exports._item
lib_item

pspec

The SETL Programming Language

simple_ prog module_ prog

program tok_nam;
{lib _item}
{decl}
{stmt}
{refine}
{routine}
end[program [...]];

direc_unitprog_ unit{module_unit}

directory tok_nam;
{lib _item}
{decl}
program tok_nam- tok_nam: dir_spec
{module tok_nam- tok_nam: dir_spec}
end|[directory [...]];

library tok_nam;
{lib _item}
{export_item}
{decl}
routine
{routine}
end[library [...]];
{dir_item} {decl_repr}

read. item write_item|
imports_ item| exports_ item

readstok_namy, tok_nam} ;
writes tok_namy{, tok_nam} ;
imports pspec {, pspec} ;
exports pspec {, pspec} ;
libraries tok_nam{, tok_nam} ;

toknam [(pspeca {, pspeca})] |
tok_nam[({ pspeca ,} pspeca (*)]

Page 110

Chapter 8

pspeca

prog_ unit

module_ unit

decl

declcon

constant

sign

decL repr

repr

The SETL Programming Language

rd [tok_nam]
wr [tok_nam]
rw [tok_nam]
[tok_nam]

program tok_nam- tok_nam;
{lib _item}
dir_spec
{decl}
{stmt}
{refine}
{routine}
end[program [...]];

module tok_nam- tok_nam;
{lib _item}

ol
routine

{routine}
end[modulel[...]];

var tok_namy, tok_nam} [: BACK] ; |
constdeclcon {, declcon} ; |

init tok_nam:= constant {, tok nam= constant} ;
decL repr

toknam [= constant]

[signfok_int| [sign] tok_rea |
tok_str| tok_rea|
"{" [constant {, constant}] "}" |
"[" [constant {, constant}] "]" |
"{" constant [, constant] .. constant "}" |
"["* constant [, constant] .. constant "]"

repr repr {repr}end[repr [...]] ;

tok.nam {, tok_nam} : mode ; |
modetok_nam: mode ; |
basetok_namy{, tok_nam} : mode ; |
plex basetok_nam{, tok_nam} ;

Page 111

Chapter 8

mode

emode
basetype
maptype
routine

procedure

amglist

formal
formtype

opdef

body

refine

The SETL Programming Language

atom | boolean| real | string |

integer [(tok_int.. tok_int)] |
tuple [(mode) [(tok int)]]|

tuple (mode , mode {, mode}) |

set[(mode)]|

basetypeset(emode) |

maptype (mode) [mode] |

basetype maptype (emode) [mode] |
procedure[([mode {, mode}])][mode]|
op (mode [, mode]) mode |

* | emode | tok nam

elmt tok_nam| tok_nam

local | remote | sparse

map | mmap | smapa

procedurgopdef

proc tok_naml[arglist] ;
body

end[proc|...]];

(formal {, formal}) |
({formal ,} formal (*))

[formtype]tok_nam
rd | rw | wr

op tok_ubo(tok_nam, tok_nam) ;
body

end [op[..]];|

op tok_uuo(tok_nam) ;
body

end[op]...]];

{decl}
{stmt}
{refine}

tok.nam :: {stmt}

Page 112

Chapter 8

stmt

stmt_body

assert stm
assign. stm
call_stm

case stm

case stmt

case stm c

cont_stm
exit_stm
fail_stm

gota_stm

The SETL Programming Language

{tok_nam :} stmt. body

assert stn
assign. stnj
call_stm|
case stnj
cont_stm|
exit_stm|
fail_stm |
gota_ stm|
if_stm |
loop_stm|
pass st
quit_stm|
return_ stm
stop_ stm
succeed st
yield_stm

assertexpr;
Ihs [tok_bop] = expr ;
toknam [([expr {, expr}])1;

case stm fcase stm c
case stm c

case of
{(expr{, expr}):{stmt}}
[else{stmt}]

end[cas§;

caseexpr of
{(constant {, constant}) : {stmt} }
[else{stmt}]

end[caseq[...]];

continuel...] ;

exit ;

fail ;

gototok_nam;

Page 113

Chapter 8

if _stm

loop_stm

loopiter

init

doing
while

step

until

term

pass. stm
quit_stm
return_ stm
stop_ stm
succeed stm
yield_stm
iterator

iterelmt

lhs

The SETL Programming Language

if exprthen
{stmt}
{elseif expr then {stmt}}
[else{stmt}]

end[if [...]];

loop loopiterdo {stmt} end[loop|[...]];
(loopiter) {stmt}end]...] ;

for iterator |
[init] [doing] [while] [step] [until] [term]

init {stmt}

doing {stmt}

while expr

step{stmt}

until expr

term {stmt}

pass;

quit [...] ;

return [expr] ;

stop;

succeed

yield expr ;

iterelmt, iterelmt} ["|" expr]
Ihsin expr |

Ihs=tok_nam(lhs {, Ihs}) |

Ihs=tok_nam{ | hs {, Ihs}}

tok_nam |
["Ihst [, lhst} "T" |

Page 114

Chapter 8 The SETL Programming Language Page 115

Ihs (‘expr{, expr}) |
Ihs { expr {, expr} }

Ihst lhs| -

expr tok_uop expr |
tok_bop/ expr |
expr tok_bop expr |
expr [tok.bop] :\(eq expr |
expr tok_bop / expr |
bopnd |
Ihsfrom Ihs |
Ihsfromb |hs |
Ihsfrome lhs |
existsiterelmt {, iterelmt} "|" expr |
notexistsiterelmt {, iterelmt} "|" expr |
forall iterelmt {, iterelmt} "|" expr |

bopnd tokint | tok_rea | tokstr | tok. nam |
TRUE | FALSE pm | newat| eof | nargs| lev | ok | date | time |
(expr) | caseexpr | if_expr |
"[" [expr{, expr}]"T" |
"[" former 1" |
{" [expr {, expr}] "}" |
"{" former "}" |
bopnd (expr {, expr}) |
bopnd (expr .. [expr]) |
bopnd "{" expr {, expr} "}" |
expr {stmt} end

former &pr : iterator |

expr [, expr] .. expr |
Ihsin expr "[" expr

case. Epr caseexpr_t| case. &pr_c
case gpr_t case of
casetb {, casetbglseexpr
end
casetb expr {, expr}) : expr
case Bpr_e caseexpr of

caseeb {, caseelslseexpr
end

Chapter 8 The SETL Programming Language Page 116

caseeb tonstant {, constant}) : expr

if _expr if exprthen
expr
{ elseifexpr then expr}
elseexpr
end

In these rules, there are certain token substitutions which aneedlld@he following rules indicate
the possible substitutions. The only reason that these are stated as separate rulesdisato a
unnecessary duplication of marules which would otherwise be required.

In ary rule where the set brackets "{" and "}" appehe substitutions << and >> may be
made, to effectiely generate an extra alternagi

In ary rule where the tuple brackets [and] app#e substitutions (/ and /) may be made,
to effectively generate an extra alternagi

The sequence of twdots .. which is used foravious range constructs mayways be
replaced by ... instead, a sequence of three dots.

The character|™ may be replaced by theslword st wherever it occurs.

8.2. Token Types
This section describes the token types which were referenced in the previous section.

tok_p binary operator
All defined binary operator names, including those defined agimkgfinitions.

tok_int integer denotation
An integer denotation is a string of digits 0-9 ofydength which fits on one line of the source
program. It does not includeyadgn characters.

tok_namdentifer name

Formed as a sequence of letters, digits and the underline chaszetarg with a letterUpper and
lower case are equalent. Excludes anof the reserved names corresponding to standanddcd
and operator names, as listed in Appendix nn.

tok_rea real denotation

A real denotation is an optional string of digits, followed by a period, followed by a non-empty
string of digits (note that there must be at least one digit after the decimal point). An optional
exponent may follas consisting of the letter e (upper omler case) followed by an optional sign

(+ or-) followed by a non-empty digit string.

tok_str string denotation
A string denotation is an arbitrary sequence of characters enclosed using the character ’ (single

Chapter 8 The SETL Programming Language Page 117

guote mark or apostrophe). If this character is to appear inside the string, it is writtensas-tw
cessive gostrophe characters. Note that a string denotatianatik ather token, must fit on a sin-
gle line. If a longer string is required, the effect is obtained by writirgydwvmore successe
string denotations on successiines. Since the SETL languagevaealows two grings in adja-
cent positions, this can be unambiguously interpreted as a single long string constant.

tok_ubouser binary operator name

Consists of a period, immediately followed by a sequence of characters which meets the normal
rules for an identifier (tak nam). It is permissible for the name to be the same as an identifier name
used elsewhere, the period serving to distinguish the uses.

tok_uopunary operator
Includes all standard unary operator names, together withreamy operators defined using e
definition.

tok_uuouser unary operator name
An identifier preceded by a period, exactly as for a binary operator.

Table of Contents The SETL Programming Language

TABLE OF CONTENTS

1.1 An Introductory EXamPle............ouveeiiiiieeoiiiiiieeee e 2
1.2 Assignment Statements & EXPreSSIONS.uuuiiiiiieeeiii it e e e e e s sesivrreeeeeaae s 3
L3 EITOrS & OMEA ..cevviiiiiiiiiiiii e e ettt e e e et e e e e e e abb e e e e e eebaa s 7
B T o] =P PPERURRR 7
LD S i a e e e e e e 11
1Y/ =T o PSP 13
1.7 Conditional StAtEMENTS.....cciiiiiiiie it e et e e e e e 15
O L] = 1 (= 11T PSP 15
1.7.2 Boolean Values & OPEratQrS........cieeeeeeiiiiiiiiiiiieiieeee e e s e s seiiinrereeeeee e e e e s s snannrnseeees 16
1.7.3 CaSE STAEMENL.....ociiiiiiieieee ettt e e e e e e e e e et e e e e e e s 18
S 3 I T o PP 19
1.8.1 Set & TUPIE BIMELS ..ovviiiiiiieie e ettt e e s e e e e e e e e e s e s ereeeaeeeaeaaaas 22
1.8.2 QUANLITIEA @SS ..ot e aaae s 23
1.8.3 COMPOUN OPEIALOIS.ccceeiiiiiiiiiieieeie e e e e e e seeittaar e e e e e e e e e e s s ssnrsarerreeaaeeesesannnnnns 24
I T 01U 7 @ 11 11U | P PEEERRR 24
1.10 Labels and the GOto StatemMENtS.........ueviiiiiiiiiie e 28
N RS (0] o IS F= 11T 1 1< o) PP PP SUPPPINE 28
1.12 PASS SEAIEIMEINL. ...ceeieiiiiiiiiieiis e et e e e e e e e e e 28
1.A3 Program BN .ot e e e e e et a s 29
e T B =Tl = T T L SO PRPO 29
1.13.2 Main Program BlOCK..........cccuiiiiiiiiici et a e 29
1.13.3 Procedure Definitions..........oocuueiiiiiiiiiiie et 31
1.13.4 Operator DefiNItiONS..........ccoiiiiiiiiieieece e e e e e e e ennnes 33
2.1 A Curriculum Planning Problem.............cooiiiiiiiiiiiec e 35
N A O g T =Tt (= =) A PSSR 43
3.2 SYNtaCtiCal TOBINS ...eoeiiiiii it e e e e e e e e e e e e e e s aeees 45
B JRC B B = =14/ 012 TSP UPP PR 47
G B =T o To] = i [0 = F PO UPRPPRRRP 48
0 T [0 (= To [Tl B I=T o) = Vi [o] =N PPERRPR 48

Table of Contents The SETL Programming Language

Table of Contents The SETL Programming Language

3.4.2 REAI DENOLALIONS.eiiiiiiiiieeiiiiiie ettt et ettt e e e s e e e snb e e e s snnaeee s 48
3.4.3 StriNG DENOLALIONS.......c..uiiiiiiieiie e e e e e e e s e e e e e e e e s s s rareeeaeaeas 49
3.4.4 BOOIEAN DENOLALIONS.....cuveiiieiiiiiiie ettt e sttt s et e e e st e e s et e e e e snrbee e e e e neees 49
3.4.5 Other DENOLALIONS.ciiiiiiiiiiee ittt e et e e e et e e e e e rnbee e e e e nneeeas 50
4.1 Basic Operands and Special SYStau®5cccccvveveeeiiiiiiciiiieecee e 51
N @ o1=] = 1 (0] £ SOPPPPRPR TP 56
4.2.1 UNAIY OPEIALOIS. ... i eiiiiiiiiee ettt e ettt e e e et e e e e e et s s e e e e eabaa e e e e e eatbneeeseesenns 56
4.2.2 BINArY OPEIAOrS.ceeeiiiiiiciiiiiiett e e e e e e s e e s e e e e e e e e e e s s st ar e e e e aaeeesesannnnnneeneeees 60
4.2.3 ComMPOUNT OPEIALOIS......uuiiiiiiiiiiieee e e e s e ecee e e e e e e e e s s s e e e e e e e e s s s s snrarraeeeees 64
4.3 ASSIGNMENT STALEMENLS......uuiiiiiiiieiee e e i e e e e e e s e e e e e e e e e s e rrrrreraaaeeas 65
4.3.1 ASSIGNING OPEIAIOSS ...ceeeeeiieiicitiiiiiie et e e e e e e se e r e e e e e e e e s s s s sstrrrerrraeaeeeaessaannns 69
4.3.2 QUANIFIEA @SS ...uviiiiiiiiii e e e e e e e s a e e e e e e e e aaaaae 71
4.3.3 Operator Precedence RUIES........cuiiiiii it 72
4.3.4 SIAE HECES ...t 74
5.1 Conditional Statements & EXPreSSIONS.ccceviiiiiiiiiiiiieeeee e e e eeiiirrreee e e e e e e s 75
L | B8S] = 1 0= 1 1= | A PR 75
LN | d o1 £ o o 1 PRSP 78
5.1.3 CaSE STAEIMENL.....eeiiiiiiiteiee e e e e e e e e e ene e 78
5.1.4 CaSE EXPrESSIQN...cciiiieiiiii ittt ettt e e e e e s s e s e e e e e e e e e s 81
I Mo ToT o IS] =1 1=] 0 1T 01 S PP UPPPPPTT 82
5.2.1 Quit & CoNtiNUE STAtEMENLS.......uuiiiiiiiiiee e e e e s e e e e e e e e e 84
5.2.2 HEIAtOr BIMS ..o e e e e e e e e e e e e e e e eenennenes 84
5.2.3 St & TUPIE BIMETS ...ttt e e e e e e e e eeeeeaeas 86
SRS I o] (o] £=1 =11 0[] o | PP PTPTPPPRPPPPP
5.4 StOP StAIEMENT....uuiiiiiieeiii et 88
5.5 PaSS STAIEMENL......coeeiiiiiiiiite e e e e 88
5.6 ASSEIT STAIEIMENL.....ceieieiiieieet et 88
7.1 TYPE TS OPBIALOIS. ... e eeiteeitiie e ettt e et e e et e e e e e et s e e e e ea e e e e e e aebneeeseeeenas 91
7.2 Operator DEfiNItIONS.ccoii i e e e e e e e e e s 92
8.1 SYNIAX RUIBS... ..ttt e e e e e e e e e s s e et b e e reeaaeeeseeannnnes 109
116

S o] T T 7 L= SRR

